
Module 1 Introduction to Software
Engineering Basics – Part 3

Mr. Swapnil S Sontakke (Asst. Prof.)

Department of Computer Science and Engineering,

Walchand College of Engineering, Sangli

Content

• Other Software Processes
• Project Management Process

• Configuration Management Process

• Process Management Process

2

3

Other Software
Processes

Other Software Process

• Other Processes
• Development process is the central process in software

processes.

• But, other processes are needed to properly execute
development process and achieve desired characteristics of
software processes.

• These processes are for each of the activities in the
development process, e.g. requirements, design, testing, etc.

• We discuss here some of the important processes

4

Other Software Process

• Project Management Process
• To meet cost, quality and schedule objectives of software

development:
• Resources have to be properly allocated to each activity

• Progress of different activities has to be monitored

• Corrective measures, if needed, need to be taken

• Scheduling of each activity has to be done

5

Other Software Process

• Project Management Process
• To meet cost, quality and schedule objectives of software

development:
• Project risk plan has to be created

• Change requests have to be managed

• These and many other activities that ensure cost, quality and
schedule objectives are part of Project Management Process.

6

Other Software Process

• Project Management Process
• Basic Task: To plan the detailed implementation of the

development process chosen for a project and then ensure the
plan is followed.

• The focus is on issues like
• Planning a project

• Estimating resource and schedule

• Monitoring and controlling the project

7

Other Software Process

• Project Management Process
• Project Management process activities are broadly grouped in

three phases:
• Planning

• Monitoring and Control

• Termination Analysis

8

Other Software Process

• Project Management Process
• Planning

• First phase of project management process

• Important phase and forms basis formonitoring and control

• Goal: To develop a plan for software development to meet
project objectives successfully and efficiently

• Software plan is produced before the development begins

• It is updated as development proceeds and project progress
data becomes available.

9

Other Software Process

• Project Management Process
• Planning

• Major activities include

• Cost estimation

• Schedule and milestone determination

• Project staffing

• Quality control plans

• Controlling and monitoring plans

10

Other Software Process

• Project Management Process
• Monitoring and Control

• Longest phase in terms of duration

• Encompasses most of development process

• It includes all activities that project management has to
perform while development is going on

• It also ensure that project objectives are met and development
proceeds according to plan

11

Other Software Process

• Project Management Process
• Monitoring and Control

• Monitoring potential risk is important activity which focuses on
potential risks, if any during the development of project.

• Monitoring a development process requires proper information
about the project.

12

Other Software Process

• Project Management Process
• Monitoring and Control

• Major activities include

• Measuring planned performance vs actual performance.

• Ongoing assessment of the project’s performance to identify
any preventive or corrective actions needed.

13

Other Software Process

• Project Management Process
• Monitoring and Control

• Major activities include

• Keeping accurate, timely information based on the project’s
output and associated documentation.

• Monitoring the implementation of any approved changes or
schedule amendments.

14

Other Software Process

• Project Management Process
• Termination Analysis

• Last phase of management process

• Performed when the development is over

• Goal: To provide the information about the development
process and learn from the project in order to improve the
process.

• Also called as postmortem analysis.

15

Other Software Process

16Fig. 1 Temporal Relationship Between Development and Management Process

Other Software Process

• Software Configuration Management Process
• Changes continuously take place in a software development

project
• Changes due to evolution of work products

• Changes due to bugs

• Changes due to requirements changes

• These changes are reflected as changes in the files containing
source, data, documentation, manuals, other work products.

17

Other Software Process

• Software Configuration Management Process
• To systematically control these changes Configuration Management
(CM) or Software Configuration Management (SCM) is required.

• IEEE defines SCM as

“the process of identifying and defining the items in the system,
controlling the change of these items throughout their life cycle,
recording and reporting the status of items and change requests, and
verifying the completeness and correctness of items.”

18

Other Software Process

• Software Configuration Management Process
• It is independent of development process.

• Development models look at the macro picture and not on
changes to individual files

• Development process is brought under SCM, so changes are
allowed in controlled manner.

• SCM directly controls the products of a process

• It indirectly influences the activities producing the products

19

Other Software Process

20
Fig. 2 Configuration Management and development process

Other Software Process

• Software Configuration Management Process Functionalities
• Give latest version of a program

• Changes should be done in the latest version of a file.

• CM process will ensure that the latest version of a file can be
obtained easily

• Undo a change or revert back to a specified version
• Change made in a program or many programs to implement

some change request may sometimes need to be undone

• The CM process must allow this to happen smoothly

21

Other Software Process

• Software Configuration Management Process Functionalities
• Prevent unauthorised changes or deletions

• A change in program may be done that has some adverse side
effects

• The CM process must ensure that the unapproved changes are
not permitted

22

Other Software Process

• Software Configuration Management Process Functionalities
• Gather all sources, documents and other information for the

current system
• All sources and related files are needed for releasing the

product.

• These files may be needed for reinstallation or recovery.

• The CM process must provide this functionality.

23

Other Software Process

• Software Configuration Management Process
• CM is essential to satisfy the basic objective of a project:

Delivery of high quality software product to the client

24

Other Software Process

• Requirements Change Management Process
• Project requirements can change any time during the life of a

project.

• The farther down in the life cycle the requirements change,
the more severe the impact on the project.

• Requirements changes can take as much as 40% of the total
cost of the project.

• Therefore project manager must be prepared to handle any
change requests as and when they come.

25

Other Software Process

• Requirements Change Management Process
• The change management process defines the set of activities

that are performed when there are some new requirements or
changes to existing requirements

• This process also focuses on the major changes like design
changes and bug fixes.

26

Other Software Process

• Requirements Change Management Process
• This process has following steps:

• Log the changes

• Perform impact analysis on the work products

• Estimate the impact on the effort and schedule

• Review impact with concerned stakeholder

• Rework work products

27

Other Software Process

• Requirements Change Management Process
• A change is initiated by a change request.

• A change request log is maintained to keep track of the change
requests.

• Each entry in the log contains
• A change request number

• A brief description of the change

• The effect of the change

• The Status of the change requests and key dates

28

Other Software Process

• Requirements Change Management Process
• Then effect of a change request is assessed by performing
impact analysis.

• It involves
• Identifying work products and configuration items that need to

be changed

• Evaluating quantum of change to each work product and items

• Reassessing the project risks by revisiting the risk management
plan

29

Other Software Process

• Requirements Change Management Process
• It involves

• Evaluating the overall implications of the changes for the effort
and schedule estimates.

• Once the change is reviewed and approved, then it is
implemented.

• i.e. changes to all items are made

• The actual tracking of implementation may handled by SCM
process.

30

Other Software Process

• Requirements Change Management Process
• One danger: Even if some changes are not large, over the life

of the project cumulative impact of changes are large.

• So, cumulative impact of changes must also be monitored.

• For this, the change log is used frequently as a spreadsheet.

31

Other Software Process

• Process Management Process
• A software process is not a static entity.

• To meet cost, quality and schedule objectives software
process must continuously be improved.

• Improving quality and productivity of the process is main
objective of process management process.

• Project management and process management process are
different.

32

Other Software Process

• Process Management Process
• Process management focuses on improving the process which
in turn improves the general quality and productivity for the
products produced using the process.

• Project management focuses on executing the current project
and ensuring that the objectives of the project are met.

• Time duration for project management process is typically the
duration of the project while process management has larger
duration as each project provides a data point for the process.

33

Other Software Process

• Process Management Process – Capability Maturity Model
• To improve the process

• First need to understand current status of a process

• Then, build a plan to improve the process

• Changes to a process are best introduced in the small
increments

• Revolutionizing the whole process takes time as new methods
require time to internalize and truly follow.

34

Other Software Process

• Process Management Process – Capability Maturity Model
• The next question is what order should be followed or what

small change should be introduced first?

• This depends on the current status of a process.

• This concept of introducing changes in small increments
based on the current state of a process has been captured in
Capability Maturity Model (CMM) framework.

35

Other Software Process

• Process Management Process – Capability Maturity Model
• Software process capability describes the range of expected

results that can be achieved by following the process.

• It determines what can be expected from the organization in
terms of quality and productivity.

• The goal of process improvement is to improve the process
capability.

36

Other Software Process

• Process Management Process – Capability Maturity Model
• A maturity level is a well-defined evolutionary plateau

towards achieving a mature software process.

• CMM suggests that there are five levels of well-defined
maturity levels for a software process.

• These are initial (level 1), repeatable, defined, managed, and
optimizing (level 5).

• When a process improves it moves from one level to next until
it reaches level 5.

37

Other Software Process

• Process Management Process – Capability Maturity Model
• In each level it specifies the areas in which improved can be

absorbed and will bring the maximum benefits.

38

Other Software Process

39Fig. 3 Capability Maturity Model

Other Software Process

• Process Management Process – Capability Maturity Model
• The initial process (level 1)

• Ad hoc process

• Has no formalized method for any activity

• Basic project controls for ensuring the activity are done
properly but there is no project plan

• Unstable development environment

• No basis for predicting the product quality, cost and schedule
activity

40

Other Software Process

• Process Management Process – Capability Maturity Model
• The initial process (level 1)

• Success depends on the quality and capability of individuals

• Need to improve project management, quality assurance and
change control

41

Other Software Process

• Process Management Process – Capability Maturity Model
• The repeatable process (level 2)

• Project management policies for a software project are well
defined.

• Key characteristics are

• Project commitments are realistic and based on the past
experience with similar projects

• Cost and schedule are tracked and problems are resolved
when they arise

42

Other Software Process

• Process Management Process – Capability Maturity Model
• The repeatable process (level 2)

• Key characteristics are

• Formal configuration control mechanisms are in place

• Software project standards are defined and followed

• The process is repeatable i.e. results obtained by this
process can be repeated as project planning and tracking is
formal.

43

Other Software Process

• Process Management Process – Capability Maturity Model
• The defined level (level 3)

• Organization has a standardized a software process and is well
documented.

• Organization has software process group that owns and
manages the process

• Key characteristics are

• Each step/stage is carefully defined with verifiable entry
and exit criteria, methodologies for performing the step,

44

Other Software Process

• Process Management Process – Capability Maturity Model
• The defined level (level 3)

• and verification mechanism for output

• Both development and management processes are formal

45

Other Software Process

• Process Management Process – Capability Maturity Model
• The managed level (level 4)

• In this level quantitative goals exists for organization for
process and products

• Key characteristics are
• Data is collected from software processes which is used to

build models to characterize the process.

• Hence organization has a good insights of the process
capability and its deficiencies.

46

Other Software Process

• Process Management Process – Capability Maturity Model
• The managed level (level 4)

• Key characteristics are

• The results can be predicted in quantitative terms.

47

Other Software Process

• Process Management Process – Capability Maturity Model
• The optimizing level (level 4)

• Highest level of process maturity in CMM

• Focus is on continuous process improvement

• Key characteristics are

• Data is collected and routinely analysed to identify the areas
that can be strengthened to improve the quality or
productivity

48

Other Software Process

• Process Management Process – Capability Maturity Model
• The optimizing level (level 4)

• Key characteristics are

• New technologies and tools are introduced and their effect
is measured to improve the performance of the process

• Best software engineering and management practices are
used throughout the organization

49

References

• Pankaj Jalote, “An Integrated Approach to Software Engineering”, Narosa Publishing
House, 2nd Edition

• https://blog.proofhub.com/what-are-key-project-activities-in-project-management-
bf5c939e8c67

• https://www.projectmanagementqualification.com/blog/2019/10/21/project-
monitoring-control/

• https://www.javatpoint.com/software-engineering-tutorial

• https://www.geeksforgeeks.org/software-engineering-capability-maturity-model-
cmm/

50

https://blog.proofhub.com/what-are-key-project-activities-in-project-management-bf5c939e8c67
https://www.projectmanagementqualification.com/blog/2019/10/21/project-monitoring-control/
https://www.javatpoint.com/software-engineering-tutorial
https://www.geeksforgeeks.org/software-engineering-capability-maturity-model-cmm/

Module 1 Introduction to Software
Engineering Basics – Part 1

Mr. Swapnil S Sontakke (Asst. Prof.)

Department of Computer Science and Engineering,

Walchand College of Engineering, Sangli

Content

• Software Crisis

• Need of Software Engineering Approach

2

3

Software Crisis

Software Crisis

• What is Software crisis?

• What caused the Software crisis?

• The Problem Domain

• The Software Engineering Challenges

• The Solution

4

What is Software crisis?

• Software Engineering (SE) is defined as

“the systematic approach to the development, operation,
maintenance and retirement of software.”

- IEEE, Software Engineering Standards, Technical Report

5

What is Software crisis?

• Coined by NATO Software Engineering Conference, 1968 at
Garmisch, Germany

• The term is used in Computing Science for the difficulty in
writing useful and efficient computer programs in the
required time.

• Reason - rapid increases in computer power and the
complexity of the problems that could now be tackled

6

What is Software crisis?

“as long as there were no machines, programming was no
problem at all; when we had a few weak computers,
programming became a mild problem, and now we have
gigantic computers, programming has become an equally
gigantic problem”

- Edsger Dijkstra, The Humble Programmer (EWD340),
Communications of the ACM

7

What caused the Software crisis?

• Linked to overall complexity of hardware and the software
development process. It was evident in several ways:
• Projects running over-budget
• Projects running over-time
• Software was very inefficient
• Software was of low quality
• Software often did not meet requirements
• Projects were unmanageable and code difficult to maintain
• Software was never delivered

8

The Solution

• There is no single solution to the crisis.

• One possible solution of software crisis is Software
Engineering because software engineering is a systematic,
disciplined and quantifiable approach.

9

The Solution

• For preventing software crisis, there are some guidelines:
• Reduction in software over-budget

• Reduction in software over-time

• Software must be optimized to make it efficient

• The quality of software must be high

• Experienced working team member on software project

• Using standard programming style rules

• Software must be delivered

10

The Problem Domain

• Industrial Strength Software

• Software is Expensive

• Late and Unreliable

• Maintenance and Rework

11

The Problem Domain

• Industrial Strength Software
• Consider the following example of Building a software

• Q: How much time will a student require to develop a 10,000
lines of code (LOC) program/software in C/C++ at college?

• A: 2 months approx.

Productivity = output/input

= 10,000 / 2

Productivity = 5,000 LOC per person-month

12

The Problem Domain

• Industrial Strength Software
• For commercial software company,

Productivity = 100 - 1000 LOC per person-month

• Why is this difference?

• What makes these novice students more productive than
expert employees in the company?

13

The Problem Domain

• Industrial Strength Software
• The Problem Domain is the software that solves some

problem of some users where larger systems or businesses
may depend on the software, and where problems in the
software can lead to significant direct or indirect loss.

• This software is called as industrial strength software that is
different from the one built by students which is called as
student software.

14

The Problem Domain

Sr. No. Student Software Industrial Strength Software

1

Primarily meant for
demonstration purposes; generally
not used for solving any real
problem of any organization.

Primarily meant for real usage; built
to solve some problem of an
organization

2 Developer is the client/user Other organization is the user

3

Presence of bugs or faults in the
software are tolerable

Presence of bugs or faults may lead to
financial or business loss, etc. and
hence are not tolerable

15

The Problem Domain

Sr. No. Student Software Industrial Strength Software

4

In general, there is no
documentation

Documentation is necessary for users,
organization and developing industry

5
No or very less focus on User
Interface

User Interface is very important

6

No or very less amount of money
is invested

High amount of money is invested;
may cost about 10 times the student
software

16

The Problem Domain

Sr. No. Student Software Industrial Strength Software

7

Focus on testing is less, even 5%
efforts on testing may be too high

High focus on testing, about 30-50%
efforts may be spent on testing

8
Standards and development
processes/phases are not followed

Standards and development
processes/phases are strictly followed
to make it high quality

9

No requirement of backup,
recovery, fault tolerance,
portability, etc.

High requirement of backup, recovery,
fault tolerance, portability, etc.

17

The Problem Domain

Sr. No. Student Software Industrial Strength Software

10

Productivity is higher as compared
to industrial strength software

Productivity is lower as compared to
student software

11

E.g. Mini Projects, Final Year
Projects

E.g. Fusion 360, Solid Works,
AutoCAD, MATLAB, HEC-HMS,
Simulink, Microsoft Visual Studio, etc.

18

The Problem Domain

• Software is Expensive
• Industrial strength software is expensive as it is labour-

intensive
• Let us have a look at the cost involved

• Measure of software = lines of code (LOC) or thousands of lines
of code (KLOC)

• Software development cost measure = person-month (i.e. per
person per month)

• Productivity measure = LOC per person-month or KLOC per
person-month

19

The Problem Domain

• Software is Expensive
• In general, the productivity = ~300 to 1,000 LOC per person-

month

• Software companies charge the client = ~$100,000 per
person-year or $8,000 per person-month

• Cost per LOC = ~$8 to $25

• Any small project has at least = ~50,000 LOC

• Cost of the software = ~ $0.5 million to $1.25 million

20

The Problem Domain

• Software is Expensive
• In general, the workstation or server that runs the software

costs at most tens of thousands of dollars.

• Earlier in 1980s the cost of hardware were high, but today the
situation is reversed.

• The cost of software is high as compared to that of hardware.

21

The Problem Domain

• Late and unreliable
• Late software

• Survey says, more than 35% software development projects
are runaways.

• Runaway Project is a project where budget and schedule are
out of control.

• Hence, there was an emergence of consultancy companies.

22

The Problem Domain

• Late and Unreliable
• Unreliable Software

• Meaning the software does not do what it is supposed to do or
does something it is not supposed to do

• A survey says, more than 70% equipment failures were due to
the software.

• E.g. software with electrical, hydraulic and mechanical
systems, Apollo flight failure, India’s test firing of missile,
banking, etc.

23

The Problem Domain

• Late and Unreliable
• Unreliable Software

• Software failures are different from mechanical or electrical
system failures

• In mechanical or electrical, failure is mainly due to the change
in physical or electrical properties due to aging.

• In software, failure is due to the bugs or errors introduced
during the design and development process i.e. at the start
only.

24

The Problem Domain

• Maintenance and Rework
• Maintenance

• Once the software is delivered and deployed, it enters the
maintenance phase.

• Why software needs maintenance, if it does not age?

• The answer is residual errors remained in the system.

• It is believed that all the software has residual errors or bugs
in it.

25

The Problem Domain

• Maintenance and Rework
• Maintenance

• They can be discovered only after the software has been in
operation, sometimes for a long time.

• This leads to the change in software, and is called as corrective
maintenance.

26

The Problem Domain

• Maintenance and Rework
• Maintenance

• Software also undergoes changes (upgrades or updates) to
add more features and services.

• Change in software needs to change the environment.

• This phenomenon is known as law of software evolution and
the maintenance due to this phenomenon is called as adaptive
maintenance.

27

The Problem Domain

• Maintenance and Rework
• Rework

• For large and complex software systems, all the requirement
are not understood before the commencement of software
development.

• As time goes and client’s understanding of software improves,
they specify the additional requirement.

• This leads to the change in the requirement, design and code
to accommodate the change. This leads to the rework.

28

The Problem Domain

• Maintenance and Rework
• Rework

• As times change, needs also change.

• This also leads to the rework.

• It is estimated that the rework costs are 30-40% of the
development cost.

29

The Software Engineering Challenges

• Basic Problem

• Primary challenges for Software Engineering

• Scale

• Quality and Productivity

• Consistency and Repeatability

• Change

30

The Software Engineering Challenges

• Basic Problem

• Systematic Approach: Methodologies used for development
of software are repeatable.

31

Team 1

Team 2

Methodologies
with Systematic

approach

Similar
Software

Fig. 1 Systematic Approach

The Software Engineering Challenges

• Basic Problem

• Goal of Software Engineering:
• Take Software development closer to science and engineering

where outcomes are predictable as compared to the traditional ad-
hoc approaches which are being used since many years.

• The Problem:
• To systematically develop software to satisfy the needs of some

users or clients

32

The Software Engineering Challenges

• Basic Problem

33

Fig. 2 Basic
Problem

The Software Engineering Challenges

• Basic Problem

• There are some factors that affect the approaches selected to
solve the problem.

• These factors are the primary forces that drive the progress
and development in software engineering.

• These factors include scale, quality, productivity, consistency,
repeatability and change.

34

The Software Engineering Challenges

• Scale

• It is measure, dimension or proportion of something.

• Methods for solving small problems do not scale up for large
problems

• E.g. counting people in room vs taking census

• Methods required to develop large software must be
different than that of small software

35

The Software Engineering Challenges

• Scale

• Two dimensions in this
• Engineering methods – methods, procedures and tools

• Project Management – managing the project by leading the
work of a team to achieve the goals and meet success criteria
at a specified time.

• Both must be more formal for developing large software.

36

The Software Engineering Challenges

• Scale

37

Fig. 2 The Problem of
Scale

The Software Engineering Challenges

• Scale

• No universally accepted project scale

• But, informally,
• Small Project – <10 KLOC

• Medium Project – >10 KLOC and <100 KLOC

• Large Project - >100 KLOC and < 1 million LOC

• Very Large Project - >1 million LOC

38

The Software Engineering Challenges

• Productivity (P)
• Software Engineering is driven by cost, schedule and quality.

• Development cost is dominated by manpower cost.

• Cost measure – person-month

• Schedule – Software must be delivered within a time

i.e. Cycle time from concept to delivery – as small as possible

• Productivity measure – LOC (KLOC) person-month

• It captures cost as well as schedule

39

The Software Engineering Challenges

• Productivity (P)
• If P is higher then cost will be lower

• If P is higher then time will be less

• This means a development team with higher productivity will
complete the software in lesser time than a same-size team
with lower productivity.

40

The Software Engineering Challenges

• Quality (Q)
• One of the major factor driving any production.

• Quality is fundamental goal of software engineering.

• Six attributes or characteristics of quality.

41

The Software Engineering Challenges

• Quality (Q)

42

Software Quality

Functionality Reliability Usability Efficiency Maintainability Portability

Fig. 4 Software quality attributes

The Software Engineering Challenges

• Quality (Q)
• Two important consequences of multiple dimensions to

quality

• First – Software quality cannot be reduced to single
parameter

• Second – Concept of quality is project specific

• In general, reliability is considered as main quality factor.

43

The Software Engineering Challenges

• Quality (Q)
• Unreliable Software = Presence of defects

• Quality measure = number of defects in software per unit size

• Best practice is 1 defect per 1 KLOC

• Quality objective is to reduce the number of defects per KLOC

• What is defect?

• Defect definition is project specific

44

The Software Engineering Challenges

• Consistency and Repeatability
• A company may deliver high quality and high productivity

software once.
• Key challenge – repeating success for all projects and

consistency in quality and productivity
• Goal of Software Engineering – system after system can be

produced with high quality and high productivity
• This means – methods that are being used should be

repeatable across projects leading to consistency in quality of
software

45

The Software Engineering Challenges

• Consistency and Repeatability
• Consistency allows organization to predict the output of

project with accuracy.

• Consistency can be achieved by using methodologies in
consistent manner.

• Frameworks like ISO9001 and Capability Maturity Model
(CMM) encourage organizations to standardize
methodologies, use them consistently and improve them
based on experience.

46

The Software Engineering Challenges

• Change
• Business changes very rapidly.

• Business changed – Supporting software has to be changed

• Software is easy to change as it lacks physical properties.

• Software engineering challenge is to accommodate and
embrace the change.

47

48

Need of
Software Engineering

Approach

Need of Software Engineering Approach

• Phased Development Process

• Managing the Process

49

Need of Software Engineering Approach

• We now understand the problem domain and the factors
that drive the software engineering.

• Objective – To develop a software with high quality and
productivity consistently for large scale problems under
dynamics of changes.

• Q&P is governed by three main forces: People, Processes and
Technology

• Called as the ‘Iron Triangle’

50

Need of Software Engineering Approach

51Fig. 5 The Iron Triangle

Need of Software Engineering Approach

52

• Technology has to be good (state-of-the-art)

• People doing the job have to be properly trained

• Good processes or methods have to be used

• Main focus: Processes i.e. systematic approach

• Approach: To separate the process for developing software
from the developed product

Need of Software Engineering Approach

53Fig. 6a Call of Duty: Mobile Fig. 6b StrikeFortressBox

Need of Software Engineering Approach

54

• Premise: The software process determines the quality of the
product and productivity.

• So, to tackle the problem domain and software engineering
challenges, focus must be on software process.

• Other disciplines focus on the product while SE focuses on
process for developing the product.

• Two aspects: Phased development process and Managing
the process

Need of Software Engineering Approach

• Phased Development Process
• Consists of various phases

• Each phase ends with a defined output

• Phase order is followed as specified by the process model

• Why Phased Process?
• It breaks the problem into phases each having its own concern.

• Cost required will be lower as compared to that of whole
project

55

Need of Software Engineering Approach

• Phased Development Process
• Why Phased Process?

• It allows proper checking for quality and progress at some
defined time intervals (at the end of each phase).

• It is central to the software engineering approach for solving
the software crisis.

• Basic software development phases: Requirement analysis,
Software design, Coding and Testing

56

Need of Software Engineering Approach

• Phased Development Process
• Requirement Analysis

• Performed to understand the problem the software system is to
solve

• It focuses on identifying what is needed from the system

• Two major activities: problem understanding or analysis and
requirement specification

• Output: Software Requirement Specification Document

57

Need of Software Engineering Approach

• Phased Development Process
• Software Design

• Purpose is to plan a solution of the problem specified by the
requirements document.

• Problem domain -> Solution domain

• Output: architecture design, high level design and detailed
design

58

Need of Software Engineering Approach

• Phased Development Process
• Coding

• The goal is to translate the design of the system into code in a
given programming language

• It affects testing and maintenance

• Output: Program or set of programs

59

Need of Software Engineering Approach

• Phased Development Process
• Testing

• Quality control measure

• Main function is to detect the defects in the system/software.

• The goal is to uncover requirement, design and coding errors in
the programs.

• Types: unit testing, integration testing, system testing and
acceptance

60

Need of Software Engineering Approach

• Managing the Process
• Project management handles the issues relating to managing

the development process of a project.

• It revolves around a project plan.

• Plan forms a baseline that is used for monitoring and
controlling the development process

• Includes how to allocate resources, scheduling different
activities, how to divide work within a phase, etc.

61

Need of Software Engineering Approach

• Managing the Process
• Product metrics and process metrics are used for the software

development
• They quantify the characteristics of product and process resp.
• Product metrics – size, complexity, performance, design

features, etc.
• Process metrics – productivity, cost, and resource

requirements, effect of development tools and techniques, etc.
• These are important for managing a software development

62

References

• https://en.wikipedia.org/wiki/Software_crisis

• https://www.ukessays.com/essays/information-technology/symptoms-and-
primary-causes-of-software-crisis-information-technology-essay.php

• https://www.geeksforgeeks.org/software-engineering-software-crisis/

• https://en.wikipedia.org/wiki/Spaghetti_code

63

https://en.wikipedia.org/wiki/Software_crisis
https://www.ukessays.com/essays/information-technology/symptoms-and-primary-causes-of-software-crisis-information-technology-essay.php
https://www.geeksforgeeks.org/software-engineering-software-crisis/
https://en.wikipedia.org/wiki/Spaghetti_code

Module 2 Software Quality and
Project Planning – Part 2

Mr. Swapnil S Sontakke (Asst. Prof.)

Department of Computer Science and Engineering,

Walchand College of Engineering, Sangli

Content

• Introduction

• Project Management

2

Introduction

• We have seen that software development can be split into
two parts:
• Project Development

• Project Management

• Both have separate processes.

• Here we shall discuss need of project management,
activities, scheduling, resource management, risk
management and tools to for effective project management.

3

Software Project Management and its Need

• It is an integral part of software development.

• To achieve the goal of meeting the cost, quality and schedule
objectives project management is important.

• To achieve this goal, resources have to be allocated properly,
each activity has to be monitored and if necessary, corrective
actions needs to be taken.

• It also focuses on planning a project, estimating resource
and schedule and monitoring and controlling the project.

4

Software Project Management and its Need

• It also needs to consider the risks in the project and their
management.

• Project management process specifies all these activities to
ensure that the cost, quality and schedule goals are met.

• Fig. 1 shows these goals.

5

Software Project Management and its Need

6
Fig. 1 Project Management Goals

Project Manager

• Project Manager is a person who undertakes the
responsibility of executing the software project.

• He/she is thoroughly aware of all the SDLC phases of the
project.

• He/she may not be involved in the development process
directly but controls, manages and monitors all the activities
in the project.

7

Project Manager - Responsibilities

• Managing People
• Act as a project leader

• Liaison with stakeholders

• Managing human resources

• Setting up reporting hierarchy etc.

8

Project Manager - Responsibilities

• Managing Project
• Defining and setting up project scope

• Managing project management activities

• Monitoring progress and performance

• Risk analysis at every phase

• Take necessary step to avoid or come out of problems

• Act as project spokesperson

9

Project Management Activities

• We have seen that project management activities are split
into three categories:
• Project Planning

• Monitoring and Control

• Termination Analysis

10

Project Management Activities

• Project planning
• First phase

• Performed before the production of the software starts.

• Goal: To develop a plan for software development to meet
project objectives successfully and efficiently.

• It may include following tasks.

11

Project Management Activities

• Project planning – Scope Management
• It defines the scope of the project.

• It includes all the activities that a process need to be done in
order to make a deliverable software product.

• It is important as it creates the boundaries of project by
defining what should be done in the project and what would
not be done.

12

Project Management Activities

• Project planning – Scope Management
• It is necessary during the scope management to –

• Define the scope

• Decide its verification and control

• Divide the project into various smaller parts for ease of
management

• Verify the scope

• Control the scope by incorporating changes to the scope

13

Project Management Activities

• Project planning – Project Estimation
• To manage and control the project efficiently and effectively

the accurate estimations of various measures is necessary.

• It may involve - Software size estimation, Effort estimation,
time estimation and Cost estimation

14

Project Management Activities

• Project planning – Project Estimation
• Software size estimation

• Measured in KLOC (Kilo Lines of Code)

• Another measure is number of function points

• KLOC depend on the coding practices

• Function points depends on the user requirements.

15

Project Management Activities

• Project planning – Project Estimation
• Effort estimation

• Measured in personnel requirement and man-hour required to
produce a software.

• It may be based on the manager’s experience, organization’s
historical data or software size.

16

Project Management Activities

• Project planning – Project Estimation
• Time estimation

• Software tasks are divided into smaller tasks, activities or
events by Work Breakthrough Structure (WBS).

• The tasks are scheduled on day-to-day basis or in calendar
months.

• The sum of time required to complete all tasks in hours or days
is the total time invested to complete the project.

17

Project Management Activities

• Project planning – Project Estimation
• Cost estimation

• It is one of the difficult task.

• Depends on many factors.

• For estimating project cost, it is required to consider - Size of
software, Software quality, Hardware, Additional software or
tools, licenses etc., Skilled personnel with task-specific skills,
Travel involved, Communication, Training and support, etc.

18

Project Management Activities

• Project planning – Project Estimation
• Project manager can estimate the listed factors using two

broadly recognized techniques –

• Decomposition Technique

• Empirical Estimation Technique

19

Project Management Activities

• Project planning – Project Estimation
• Decomposition Technique

• This technique assumes the software as a product of
various compositions.

• There are two main models -
• Line of Code Estimation is done on behalf of number of

line of codes in the software product.

• Function Points Estimation is done on behalf of number of
function points in the software product.

20

Project Management Activities

• Project planning – Project Estimation
• Empirical Estimation Technique

• This technique uses empirically derived formulae to make
estimation.

• These formulae are based on LOC or FPs.

• There are two models –
• Putnam Model

• COCOMO

21

Project Management Activities

• Project planning – Project Estimation
• Empirical Estimation Technique

• Putnam Model

• This model is made by Lawrence H. Putnam.

• It is based on Norden’s frequency distribution (Rayleigh
curve).

• Putnam model maps time and efforts required with
software size.

22

Project Management Activities

• Project planning – Project Estimation
• Empirical Estimation Technique

• COCOMO

• COCOMO stands for COnstructive COst Model.

• It was developed by Barry W. Boehm.

• It divides the software product into three categories of
software: organic, semi-detached and embedded.

23

Project Management Activities

• Project planning – Project Scheduling
• Project Scheduling in a project refers to roadmap of all

activities to be done with specified order and within time slot
allotted to each activity.

• Project managers tend to define various tasks, and project
milestones and arrange them keeping various factors in mind.

24

Project Management Activities

• Project planning – Project Scheduling
• For scheduling a project, it is necessary to -

• Break down the project tasks into smaller, manageable form

• Find out various tasks and correlate them

• Estimate time frame required for each task

• Divide time into work-units

• Assign adequate number of work-units for each task

• Calculate total time required for the project from start to finish

25

Project Management Activities

• Project planning – Resource Management
• To develop a software product many resources are involved.
• These may include human resource, productive tools and

software libraries.
• They may be in limited quantity and their shortage may

hamper the development process and project may lag behind
the schedule.

• Allocating extra resources may increase the development cost,
so it is necessary to estimate and mange the resources
correctly.

26

Project Management Activities

• Project planning – Resource Management
• Resource management includes -

• Defining proper organization project by creating a project team
and allocating responsibilities to each team member

• Determining resources required at a particular stage and their
availability

• Manage Resources by generating resource request when they
are required and de-allocating them when they are no more
needed.

27

Project Management Activities

• Project planning – Risk Management
• Risk management involves all activities pertaining to

identification, analyzing and making provision for predictable
and non-predictable risks in the project.

• It may include the following:

• Experienced staff leaving project and new staff coming in

• Change in organizational management

• Requirement change or misinterpreting requirement

28

Project Management Activities

• Project planning – Risk Management
• It may include the following:

• Under-estimation of required time and resources.

• Technological changes, environmental changes, business
competition

29

Project Management Activities

• Project planning – Risk Management Process
• Following activities are involved in the risk management

process.
• Identification - Make note of all possible risks, which may

occur in the project.

• Categorize - Categorize known risks into high, medium and
low risk intensity as per their possible impact on the project.

30

Project Management Activities

• Project planning – Risk Management Process
• Following activities are involved in the risk management

process.
• Manage - Analyze the probability of occurrence of risks at

various phases. Make plan to avoid or face risks. Attempt to
minimize their side-effects.

• Monitor - Closely monitor the potential risks and their early
symptoms. Also monitor the effects of steps taken to mitigate or
avoid them.

31

Project Management Tools

• There are tools available, which aid for effective project
management.

• Some of them are
• Gantt Chart

• PERT Chart

• Resource Histogram

• Critical Path Analysis

32

References

• Pankaj Jalote, “An Integrated Approach to Software Engineering”, Narosa Publishing
House, 2nd Edition

• https://www.tutorialspoint.com/software_engineering/software_project_manageme
nt.htm

• https://www.javatpoint.com/software-project-management

• https://www.geeksforgeeks.org/software-engineering-cocomo-model/

33

https://www.tutorialspoint.com/software_engineering/software_project_management.htm
https://www.javatpoint.com/software-project-management
https://www.geeksforgeeks.org/software-engineering-cocomo-model/

Module 3 Software Development
Phases – Part 2

Mr. Swapnil S Sontakke (Asst. Prof.)

Department of Computer Science and Engineering,

Walchand College of Engineering, Sangli

Content

• Design Principles

• Coding Standards

• Testing Fundamantals

2

3

Design Principles

Design Principles

• Introduction
• Design activity begins when the SRS of the software becomes

available and architecture has been designed.

• The design of a system is essentially a blueprint or a plan for the
system.

• The design process often has two levels:

• System design or top-level design

• Logic design or detailed design

4

Design Principles

• Introduction
• System design or top-level design

• Focus is on deciding which modules are needed for the
system, their specifications and how these modules should
be interconnected.

• Logic design or detailed design

• The internal design of the modules or how the
specifications of the module can be satisfied, is decided.

5

Design Principles

• Introduction
• The design of a system should be correct, verifiable, complete

and traceable.

• The goal of design process is not simply to produce a design
but is to find the best possible design within the limitations
imposed by requirements and physical and social
environment in which the system will operate.

• Two most important properties are efficiency and simplicity.

6

Design Principles

• Introduction
• Efficiency of any system is concerned with the proper use of

scarce resources by the system.

• If some resources are scarce and expensive, then they must be
used efficiently.

• Simplicity of any system is concerned with how simple and
understandable the system is and it depends on the design.

• Simplicity affects the maintainability of the system.

7

Design Principles

• Introduction
• Only after having the thorough knowledge of the system, the

maintainer can do necessary modification in the system and
maintain the system.

• Following design principles help achieve good design of a
system.

8

Design Principles

• Problem Partitioning and Hierarchy
• Small problems can be solved entirely, but it is quite difficult

to solve large and complex problems all at once.

• The basic principle is the time-based principle of divide and
conquer.

• The goal of software design is to divide the problem into
manageable smaller pieces so that each piece can be
conquered (solved) separately.

9

Design Principles

• Problem Partitioning and Hierarchy
• It is believed that the cost of solving the entire problem is

more than the sum of the cost of solving all the pieces.

• However, all the pieces cannot work independently as they
together form the system.

• They have to cooperate and communicate to solve the larger
problem.

• This communication due to partitioning adds complexity
which may not have existed in the original problem.

10

Design Principles

• Problem Partitioning and Hierarchy
• Also, cost of partitioning and combining along with the

complexity become more than saving achieved by
partitioning.

• It can be argued that maintenance is minimized if each part
can be easily related to the application and each piece can be
modified easily.

11

Design Principles

• Problem Partitioning and Hierarchy
• Problem partitioning leads to the hierarchies in the design.

• So, design can be represented as a hierarchy of components.

• In general, hierarchical structure makes complex system
easier to understand.

12

Design Principles

• Abstraction
• Abstraction is used in all engineering disciplines.

• It is a tool that permits a designer to consider a component at
an abstract level without worrying about the details of the
implementation of the component.

• Every component provides a service to its environment.

• An abstraction of a component describes the external
behaviour of that component without bothering with the
internal details that produce the behaviour.

13

Design Principles

• Abstraction
• Abstraction is essential part of the design process and

problem partitioning.

• Various components interact with other components and to
understand this the designer has to know the external
behaviour of other components.

• It should not determine the behaviour of other components.

• To allow the designer to concentrate on one component at a
time, abstraction of other components is used.

14

Design Principles

• Abstraction
• Abstraction is used for existing components as well as

components that are being designed.

• Also, it helps during the maintenance phase.

• Using the abstractions, behaviour of entire system can be
understood which help determine how modifying a
component affects the system.

15

Design Principles

• Abstraction
• Two common abstraction mechanisms:

• Functional Abstraction

• Data Abstraction

16

Design Principles

• Abstraction – Functional Abstraction
• In this a module is specified by the function it performs.

• E.g. a module to sort an array can be shown by the
specification of sorting, a module to compute the log of a
value can be represented by the function log, etc.

• It is a basis of partitioning in function-oriented design i.e.
when the problem is being partitioned, the overall
transformation function for the system is partitioned into
smaller functions that comprise the whole system.

17

Design Principles

• Abstraction – Data Abstraction
• In this data is treated as objects with some predefined

operations on them.

• The operations defined on a data object are the only
operations that can be performed on those objects.

• From the outside of the object, the internal details of the
object are hidden; only operations are visible.

• It forms a basis for object-oriented design.

18

Design Principles

• Modularity
• A system is considered modular if it consists of discreet

components so that each component can be implemented
separately, and a change to one component has minimal
impact of other components.

• Modularity helps in system debugging, system repair and
system building.

19

Design Principles

• Modularity
• For modularity to work well in software system each module

should

• support a well-defined abstraction

• have clear interface through which it can interact with
other modules.

• For easily understandable and maintainable system,
modularity is important and partitioning and abstraction help
achieve the modularity.

20

Design Principles

• Top-Down and Bottom-Up Strategies
• In general, a system is a hierarchy of components and each

component can have its sub-components.

• Highest-level component corresponds to the whole system

• To approaches to design a hierarchy:

• Top-down approach

• Bottom-up approach

21

Design Principles

• Top-Down and Bottom-Up Strategies – Top-down Approach
• Top-down approach starts from highest-level component and

proceeds through to lowest levels.

• It starts by identifying the major components of the system,
decomposing them into their lower-level components and
iterating until the desired level is achieved.

• It results in stepwise refinement.

22

Design Principles

• Top-Down and Bottom-Up Strategies – Top-down Approach
• Design starts with abstract design and at each step the design

is refined to more concrete level until no refinement is needed
and design can be implemented directly.

• This is suitable when the system specifications are well-
known and the development is from scratch.

23

Design Principles

• Top-Down and Bottom-Up Strategies – Bottom-up Approach
• Design starts with most basic or primitive components and

proceeds to higher-level components that use these lower-
level components.

• It works with layers of abstraction.

• Starts from very bottom, operations that provide the layer of
abstraction are implemented.

• The operations at this layer are then used to implement more
powerful operations.

24

Design Principles

• Top-Down and Bottom-Up Strategies – Bottom-up Approach
• This is continued until operations supported by the layer are

those desired by the system.

• This is suitable if a system is to be built from an existing
system.

25

26

Coding Standards

Coding Standards

• Introduction
• Programmers spend a little time on writing the code and

more time on reading the code during debugging and
enhancement.

• People other than author spend a considerable time in
reading as the code is often maintained by someone other
than the author.

• So, it is important that code should be easy to read,
understand and maintain.

27

Coding Standards

• Introduction
• Coding standards provide rules and guidelines for

programmers for some aspects of programming in order to
make the code easier to read, understand and maintain.

• These guidelines may be regarding naming, file organization,
statements and declarations and layouts and comments.

• We discuss here some of the generalised guidelines with
respect to Java programming language.

28

Coding Standards

• Coding Standards – Naming Conventions
• Variable names should be nouns starting with lower case (e.g.
name, amount, sum)

• Constant names should be upper case (e.g. PI, MAX, MIN)

• Method names should be verbs starting with lower case (e.g.
getValue(), computeArea())

• Package names should be lower case (e.g. mypackage, game.ui)

• Loop iterators should be named I, j, k, l, etc.

29

Coding Standards

• Coding Standards – Naming Conventions
• Boolean variable and method names should start with is to

avoid the confusion (e.g. isValid(), isNumber)

• Also negative Boolean names should be avoided (e.g.
isNotCorrect, instead use isFalse)

30

Coding Standards

• Coding Standards – Files
• Java source file should have the extension .java

• Class name should be same as the file name

• Line length should be less than 80 columns and special
characters such as *, :, ;, etc should be avoided

31

Coding Standards

• Coding Standards – Statements
• Variable should be initialised where declared
• Related variables should be declared in a common statement
(e.g. num1, num2 and result should be declared as
int num1, num2, result=0;

And not
int num1;
int num2;
int result;

32

Coding Standards

• Coding Standards – Indentation
• Proper indentation should be used as it makes the code

readable. Some of the spacing conventions are:
• Each nested block should be properly indented and spaced.
• Proper Indentation should be there at the beginning and at the

end of each block in the program.
• All braces should start from a new line and the code following

the end of braces also start from a new line.
• There must be a space after giving a comma between two

function arguments.

33

Coding Standards

• Coding Standards – Comments
• Comments are the textual statements that are meant for the
program reader to aid the understanding of the code.

• In general comments should explain what the code is doing
and why the code is written. Some guidelines are:
• Single line comments for a block should aligned with the code

they are meant for

• Comments for major variables should be there

• Trailing comments should be short

34

Coding Standards

35

36

Testing
Fundamentals

Testing Fundamentals

• Introduction

• Fundamentals Terms - Error, Fault and Failure

• Test Cases

• Testing Process

37

Testing Fundamentals

• Introduction
• Software testing is a process, to evaluate the functionality of a
software application with an intent to find whether the
developed software met the specified requirements or not and
to identify the defects to ensure that the product is defect-free in
order to produce the quality product.

• Testing performs a critical role for ensuring the software
quality.

• We discuss testing fundamentals here.

38

Testing Fundamentals

• Fundamentals Terms - Error
• Error has two different meanings.

• An error refers to the discrepancy between a computed,
observed or measured value and the true, specified, or
theoretically correct value.

• That is error refers to the difference between the actual
output of a software and the correct output.

• Error also refers to the human action that results in software
containing a defect or fault.

39

Testing Fundamentals

• Fundamentals Terms - Fault
• Fault is a condition that causes a system to fail in performing
the required function.

• It is the basic reason for software malfunction.

• It is commonly called as a bug.

• Faults in software system are only because of design faults
and not because of wear and tear in software.

40

Testing Fundamentals

• Fundamentals Terms - Failure
• Failure is the inability of a system or component to perform a
required function according to its specifications.

• It occurs if the behavior of the software is different from the
specified behavior.

• It may be caused due to functional or performance reasons.

41

Testing Fundamentals

• Fundamentals Terms - Failure
• It is produced only when there is a fault in the system.

• Presence of fault is necessary but not sufficient condition for
failure to occur.

42

Testing Fundamentals

• Test Cases
• A TEST CASE is a documented set of preconditions
(prerequisites), procedures (inputs / actions) and
postconditions (expected results) which a tester uses to
determine whether a system under test satisfies requirements
or works correctly.

• A test case can have one or multiple test scripts and a
collection of test cases is called a test suite.

43

Testing Fundamentals

• Test Cases - Characteristics
• Accurate: Exacts the purpose.

• Economical: No unnecessary steps or words.

• Traceable: Capable of being traced to requirements.

• Repeatable: Can be used to perform the test over and over.

• Reusable: Can be reused if necessary.

44

Testing Fundamentals

• Test Cases – Sample examples
• Test Case 1: Check results on entering valid User Id &

Password

• Test Case 2: Check results on entering Invalid User ID &
Password

• Test Case 3: Check response when a User ID is Empty & Login
Button is pressed

45

Testing Fundamentals

• Test Cases – Sample examples
• Each test case costs money as efforts are needed to generate

it, machine time to execute it and efforts to evaluate the
results.

• So, fundamental goal of testing is to maximize the number of
errors detected and minimize the number of test cases.

• To achieve this, test selection criterion (or test criterion) is
used.

46

Testing Fundamentals

• Testing Process
• It is a process consisting of all lifecycle activities, both static and
dynamic, concerned with planning, preparation and evaluation
of a component or system and related work products to
determine that they satisfy specified requirements, to
demonstrate that they are fit for purpose and to detect defects.

47

Testing Fundamentals

• Testing Process – Levels of Testing
• Testing is usually relied upon to detect the faults from earlier

stages, in addition to the faults introduced during coding
itself.

• So, to test the different aspects of the system, different levels
of testing are used.

• These are unit, integration, system and acceptance testing.

• Figure 2 shows the relation of the faults introduced in
different phases and different levels of testing.

48

Testing Fundamentals

49Fig. 2 Levels of Testing

Testing Fundamentals

• Testing Process – Levels of Testing
• Unit Testing

• In this different modules are tested against the
specifications produced during design for the modules.

• It is generally used for verification of code, hence the goal
is to test the internal logic of the modules.

• This testing is typically done by programmer of the
module.

50

Testing Fundamentals

• Testing Process – Levels of Testing
• Integration Testing

• In this different unit tested modules are combined into
subsystems, which are then tested.

• The goal is to see if the modules can be integrated
properly.

• The emphasis is on testing interfaces between modules.

• This can be considered testing the design.

51

Testing Fundamentals

• Testing Process – Levels of Testing
• System and Acceptance Testing

• In this entire software is tested against the requirements
specified in the SRS.

• The goal is to see if the software meets its requirements.
• This is generally validation activity.
• In acceptance testing, sometimes the realistic data from

client is used to demonstrate that the software is working
satisfactorily.

52

Testing Fundamentals

• Testing Process – Levels of Testing
• System and Acceptance Testing

• Here testing focuses on the behavior of the system and not
the internal logic.

• Mostly, functional testing is performed at these levels.

53

Testing Fundamentals

• Testing Process – Levels of Testing
• Regression Testing

• This testing is performed when some changes are made to
an existing system.

• It ensures the desired behavior of new services as well as
the desired behavior of old services.

54

Testing Fundamentals

• Testing Process – Test Plan
• It is a general document for entire project that defines the
scope, approach to be taken and the schedule of the testing and
identifies the test items for the entire testing process and the
personnel responsible for the different testing activities.

• Testing commences with test plan and terminates with
acceptance testing.

• Test plan can be defined before testing commences and can be
done in parallel with design and coding activities.

55

Testing Fundamentals

• Testing Process – Test Plan
• Inputs for test plan are: project plan, requirements document

and system design document.

• A test plan should contain:
• Test Unit Specification: Module or few modules or entire system

• Features to be tested: All software features or combination of
features

• Approach for testing: Generally, testing criterion for evaluating
the test cases.

56

Testing Fundamentals

• Testing Process – Test Plan
• A test plan should contain:

• Test Deliverables: It can be list of test cases, detailed results
including list of defects found, test summary reports, etc.

• Schedule and Task Allocation: If test plan is separate document
from project management plan, then it specifies the detailed
schedule and task allocation to each testing activities.

57

References

• Pankaj Jalote, “An Integrated Approach to Software Engineering”, Narosa Publishing
House, 2nd Edition

• https://www.geeksforgeeks.org/coding-standards-and-guidelines/

• https://www.softwaretestingmaterial.com/software-testing/

58

https://www.geeksforgeeks.org/coding-standards-and-guidelines/
https://www.softwaretestingmaterial.com/software-testing/

Module 4
Introduction and Database Modeling using ER
Model - Part 1

Mr. Swapnil S Sontakke (Asst. Prof.)

Department of Computer Science and Engineering,

Walchand College of Engineering, Sangli

Content

➢ Introduction to Database Systems

➢Advantages and Applications of Database Systems

➢Data Models

➢Data Abstraction

➢Database Schema and Instance

➢Database Languages

➢Database System Architecture

➢Database Users and Administrator

➢Entity-Relationship Model

2

Introduction to Database Systems

➢ What is Data?

“facts and statistics collected together for reference or analysis.”

Or

“the quantities, characters, or symbols on which operations are performed by a
computer, which may be stored and transmitted in the form of electrical signals

and recorded on magnetic, optical, or mechanical recording media.”

- Oxford Dictionary

3

Introduction to Database Systems

➢ What is Data?

• Data is a collection of facts, such as numbers, words, measurements,
observations or just descriptions of things which in turn may be qualitative
or quantitative.

• Data can be in many formats such as numbers, text, images, audio, video,
etc.

• Data is used to produce the information.

4

Introduction to Database Systems

➢ What is Database?

• Database is a collection of related data stored electronically in a organized
manner and used to insert, retrieve, update and delete the data efficiently.

• Data in the database is organized in the form of tables, views, schemas,
reports, etc.

• E.g. College database will have data related to students, faculty,
departments, labs, etc. which are interrelated to each other.

5

Introduction to Database Systems

➢ What is Database Management System (DBMS)?

• DBMS is an application (software) which is used to manage the databases.

• The primary goal of a DBMS is to provide a way to store, retrieve, update
and delete database information conveniently and efficiently.

• E.g. MySQL, Oracle, MariaDB, PostgreSQL, Microsoft SQL Server, Amazon
Aurora, etc.

6

File Processing Systems

➢ Initially file based systems were used to store and retrieve the data.

➢ In this simple files were stored on the electronic devices such as computers.

➢ There are many issues with this system which are as follows:

➢ Data Redundancy

• Same data is duplicated in many places (files).

• E.g. Student Email ID may be present at many sections.

• This may lead higher storage and access cost.

7

File Processing Systems

➢ Data Inconsistency

• Multiple copies of same data does not match with each other.

• E.g. If Phone number is different in contact information section and
profile section or accounts section, it will be inconsistent.

➢ Difficulty in Accessing Data

• If a set of programs for performing a particular operation is not available
then it becomes difficult to access or retrieve those data.

• E.g. Getting a list of students who live in particular district.

• No convenient or efficient way to access the data

8

File Processing Systems

➢ Data Isolation

• Data are stored in multiple files and files may be in different formats.

• Writing new programs to retrieve the appropriate data is difficult.

➢ Integrity Problems

• There can be many consistency constraints that data must satisfy.

• E.g. Account balance should not fall below Rs. 1000, etc.

• Whenever new constraints are to be added, changes in programs is
necessary which is very difficult task.

9

File Processing Systems

➢ Atomicity Problems

• A computer system is subject to failure.

• In case of failure occurs, it is necessary that the data must be restored to
the consistent state that existed prior to the failure.

• This means the operations should be atomic i.e. it must happen in its
entirety or not at all.

• E.g. Transferring money from one account to another

• Achieving atomicity is difficult in file processing systems.

10

File Processing Systems

➢ Concurrent Access Anomalies

• For the overall performance and faster response, many systems allow
multiple users to access and update the database concurrently.

• Concurrent updates may lead to inconsistency.

• E.g. If an account with ₹10, 000 is debited by two clerks concurrently
with ₹500 and ₹800 resp. If two programs run concurrently, they may
both read the value ₹10, 000 and write back ₹9500 and ₹9200. But the
correct value is ₹8700.

• This should not happen for any of the programs.

11

File Processing Systems

➢ Security Problems

• Not every user should be given access to all the data.

• E.g. Accounts persons should not have access to personal information,
Students should have access to only student portal to see their results and
should not be able to change the data, etc.

• It is difficult to provide security in file processing systems.

➢ Backup and Recovery

• File processing systems does not incorporate any backup and recovery
mechanism if the data is lost or file is corrupted.

12

Advantages of Database Systems

➢ All the issues with the file processing systems are tackled by the Database
systems or DBMS.

➢ They follow ACID properties i.e. Atomicity, Concurrency, Integrity and
Durability.

➢ Control data redundancy

➢ Control concurrent access anomalies

➢ Provide security, backup and recovery.

➢ They also support multiple views for different users such as admin, user,
manager, etc.

➢ Easy to maintain

13

Applications of Database Systems

➢ Database systems have very vast range of applications in every area.

➢ Some of the representative applications are mentioned on the next slides.

14

Applications of Database Systems

➢ Enterprise Information

• Sales: For customer, product, and purchase information.

• Accounting: For payments, receipts, account balances, assets, and other
accounting information.

• Human resources: For information about employees, salaries, payroll
taxes, and benefits, and for generation of paychecks.

➢ Manufacturing: For management of the supply chain and for tracking
production of items in factories, inventories of items in warehouses and
stores, and orders for items.

15

Applications of Database Systems

➢ Banking and Finance

• Banking: For customer information, accounts, loans, and banking
transactions.

• Credit/Debit card transactions: For purchases on credit cards and
generation of monthly statements.

• Finance: For storing information about holdings, sales, and purchases of
financial instruments such as stocks and bonds; also for storing real-time
market data to enable online trading by customers and automated
trading by the firm.

16

Applications of Database Systems

➢ Universities: For student information, course registrations, and grades (in
addition to standard enterprise information such as human resources and
accounting).

➢ Airlines: For reservations and schedule information. Airlines were among
the first to use databases in a geographically distributed manner.

➢ Telecommunication: For keeping records of calls, texts, and data usage,
generating monthly bills, maintaining balances on prepaid calling cards, and
storing information about the communication networks.

17

Applications of Database Systems

➢ Web-based services

• Social-media: For keeping records of users, connections between users
(such as friend/follows information), posts made by users, rating/like
information about posts, etc.

• Online retailers: For keeping records of sales data and orders as for any
retailer, but also for tracking a user’s product views, search terms, etc.,

• Online advertisements: For keeping records of click history to enable
targeted advertisements, product suggestions, news articles, etc.

18

Data Models

➢ Underlying structure of a database is known as data model.

➢ It is a collection of conceptual tools for describing data, data relationships,
data semantics, and consistency constraints.

➢ The data models can be classified into four categories:

• Relational Model

• Entity-Relationship (E-R) Model

• Semi-structured Data Model

• Object-Based Data Model

19

Data Models

➢ Relational Model

• It uses a collection of tables to represent both data and relationship
between those data.

• Each table consists of many columns and each column has unique name.

• Tables are also known as relations.

• This model is record-based model with fixed format.

• It is one of the widely used model.

20

Data Models

➢ Entity-Relationship (E-R) Model

• It graphically represents the objects and their relationships.

• It uses a collection of basic objects called as entities and relationships
among these objects.

• An entity is a thing or object in the real world that distinguishable from
other objects.

• The E-R model is widely used in the database design.

21

Data Models

➢ Semi-structured Model

• It permits the specification of data where individual data items of the
same type may have different set of attributes.

• It is different from previous data models.

• XML and JSON are widely used semi-structured models.

➢ Object-Based Data Model

• It is a object-oriented data model.

• It can be seen extending relational model with object oriented concepts
such as encapsulation, object identity, methods, etc.

22

Data Abstraction

➢ For the system to be usable, it must retrieve data efficiently.

➢ To achieve the efficiency, the database developers use complex data
structures to represent data in the database.

➢ As many database-system users are not trained, complexity needs to be
hidden from them.

➢ Developers achieve this using several levels of data abstraction.

➢ “Data abstraction is the process of hiding the background implementation
details and providing only essential information to the users (outside world).”

➢ Data abstraction simplifies the users’ interactions with the system.

23

Data Abstraction

➢ There are three levels of abstraction in the database system: Physical Level,
Logical Level and View Level

➢ Physical Level

• Lowest level of abstraction

• Describes how the data are actually stored

• Describes the complex low-level data structures in detail

• E.g. data stored can be described as block of storage (bytes, gigabytes),
type of files, indexes in memory

• Users: Programmers/Developers

24

Data Abstraction

➢ Logical Level

• Next higher level of abstraction

• Describes what data are stored in the database and what relationships
exists among those data

• Describes the entire database in terms of small number of relatively
simple structures

• It may still involve complex physical-level structures, but complexity is
kept hidden from its users

25

Data Abstraction

➢ Logical Level

• i.e. It hides the physical level and gives the logical view of the database.

• This is called as Physical Data Independence.

• Users: Database Administrator

• E.g.

26

Department Budget

Civil 500000

Electrical 450000

Electronics 450000

Mechanical 500000

Data Abstraction

➢ View Level

• Highest level of abstraction

• Describes only part of the entire database

• It may still involve complexity, but complexity is kept hidden from its
users

• Users don’t need access to entire database; they need only part of it.

• The view level abstraction simplifies the interaction of end users with the
system by providing many views of the same database.

27

Data Abstraction

➢ View Level

• Users: authentic end users

• E.g.

▪ Checking only bank balance

▪ Checking last 5 transactions

▪ Deriving age of using date of birth

▪ Employee can see only his/her salary and not the manager’s salary, etc.

• Figure shows relationship among three levels of abstraction.

28

Data Abstraction

29Fig. 1 Three levels of abstraction

Database Schema

➢ “The overall design of a database is called as the schema.”

➢ It defines a structure in formal language supported by a DBMS.

➢ It shows the logical view of the entire database.

➢ It shows the organization of data and relationship among them.

➢ Various schemas are defined at various abstraction level.

➢ Physical Schema

• Defines database design at physical level

• Defines how data is stored on disk storage in terms of files and indices

30

Database Schema

➢ Logical Schema

• Defines all the logical constraints that need to be applied on the data
stored

• It defines tables, views and integrity constraints.

➢ Subschemas

• A database may also have several schemas at the view level.

• These are called as “subschemas”.

• They describe various views of the database.

31

Database Schema

32
Fig. 1 Example of Database Schema in SQL

Database Instance

➢ Database is not a static, it is dynamic.

➢ This means it changes over time as new information is inserted, deleted and
updated.

➢ “The collection of information stored in the database at a particular moment
is called as an instance of the database.”

33

Database Languages

➢ A database system provides two types of languages:

• Data Definition Language (DDL)

• Data Manipulation Language (DML)

➢ In practice, DDL and DML are not separate languages rather they are part of
single database languages such as SQL.

➢ SQL is employed in almost all relational databases.

34

Database Languages

➢ Data Definition Language (DDL)

• DDL is a language that specifies a database schema by a set of definitions.

• DDL also specifies additional properties of data.

• The implementation details provided by DDL are in general hidden from
the end users. E.g.

create table department

(dept name char (20),

building char (15),

budget numeric (12,2));

35

Database Languages

➢ Data Manipulation Language (DML)

• DML is a language that enables users to manipulate or access the data as
organized by the appropriate data model.

• The types of access are:

▪ Insertion of new information into the database

▪ Retrieval of information stored in the database

▪ Modification of information stored in the database

▪ Deletion of information from the database

36

Database Languages

➢ Data Manipulation Language (DML)

• There are two types of DML: Procedural DML and Non-procedural
(Declarative) DML

• Procedural DMLs require a user to specify what data are needed and how
to get those data.

• Declarative DMLs require a user to specify what data are needed without
specifying how to get those data.

37

Database Languages

➢ Data Manipulation Language (DML)

• A query is a statement requesting the retrieval of information.

• The portion of a DML that involves information retrieval is called a query
language.

• SQL is widely used query language.

38

Database System Architecture

➢ The database system is divided into different modules having their set of
responsibilities.

➢ These modules are

• The storage manager

• The query processor components and

• The transaction management component

39

40

Database System Architecture

➢ The Storage Manager

• It provides the interface between the low-level data stored in the
database and the application programs and queries submitted to the
system.

• It is responsible for interaction with the file manager.

• It translates DML statements into low-level file-system commands, hence
is responsible for storing, retrieving, updating and deleting the data in the
database.

41

Database System Architecture

➢ The Storage Manager

• The components of storage manager are

▪ Authorization and integrity manager

▪ Transaction manager

▪ File manager

▪ Buffer manager

• The data structures implemented by the storage manager are data files,
data dictionary and indices.

42

Database System Architecture

➢ The Query Processor

• It helps the database system to simplify and facilitate access to data.

• It allows database users to achieve a good performance while working at
the view level without focusing on physical level details of
implementations.

• The components of query processor are

▪ DDL Interpreter

▪ DML Compiler

▪ Query Evaluation Engine

43

Database System Architecture

➢ The Transaction Manager

• A transaction is a collection of operations that performs a single logical
function in a database application.

• Each transaction is a unit of both atomicity and consistency.

• It allows application developers to treat a sequence of database accesses
as if they were a single unit that either happens in its entirety or not at all.

44

Database System Architecture

➢ While database engines were traditionally centralized computer systems,
today parallel and distributed databases which run faster and at different
locations are widely used.

➢ Architectures of database applications that use databases can be two tier or
three tier.

➢ In two-tier architecture, the application resides at the client machine, and
invokes database system functionality (directly) at the server machine
through query language statements.

➢ E.g. Desktop applications, games, music, etc.

45

Database System Architecture

➢ In three-tier architecture, the client machine acts as front end and there is
no any database calls.

➢ User uses application clients such as web browsers, mobile applications, etc.

➢ The front end communicates with the application server (at another
location).

➢ The application server then communicates with a database system to access
data.

➢ The business logic of the application, which says what actions to carry out
under what conditions, is embedded in the application server.

46

Database System Architecture

➢ E.g. Web-based applications, website, mobile applications, etc.

47

48
Fig. 3 Client-server 2-tier & 3-tier Architecture

Database Users and Administrator

➢ People who work with a database can be categorized as database users or
database administrators.

➢ Database Users and User Interface

• There are different types of database users, differentiated based on how
they interact with the system.

• For each of the user types different user interfaces (UI) have been
designed.

• These users are Naïve users, Application Programmers and Sophisticated
users.

49

Database Users and Administrator

➢ Naïve users

• Unsophisticated users who interact with the system by using predefined
user interfaces, such as web or mobile applications

• E.g. end users using any mobile or desktop applications or website users

➢ Application Programmers

• Computer professionals who write application programs.

• Application programmers can choose from many tools to develop user
interfaces.

• E.g. Programmers/Developers

50

Database Users and Administrator

➢ Sophisticated users

• Sophisticated users interact with the system without writing programs.

• They form their requests either using a database query language or by
using tools such as data analysis software.

• E.g. Analysts who submit queries to explore data in the database

51

Database Users and Administrator

➢ Database Administrator

• A person who has central control over the system (both data and programs
to access those data) is called a database administrator (DBA).

• The functions of a DBA include:

▪ Schema definition

▪ Storage structure and access-method definition

▪ Schema and physical-organization modification

▪ Granting of authorization for data access

▪ Routine maintenance such as backup, disk space requirements, etc.

52

Entity-Relationship Model

➢ The Entity-Relationship (E-R) Model is developed to design the structure
of a database with the help of a diagram known as The Entity-Relationship
(E-R) diagram.

➢ ER diagram expresses the overall logical structure of a database graphically.

➢ Here we discuss the main components of E-R model.

• Entity Set

• Relationship Set

53

Entity-Relationship Model

➢ Entity Set

• An entity is a “thing” or “object” in the real word that is distinguishable
from all other objects.

• E.g. every student in a college is an entity, course in a college, a flight
reservation, bank management system, etc.

• An entity has a set of properties, and the values for some set of properties
must uniquely identify an entity.

• E.g. a student may have examSeatNo whose value uniquely identifies that
person.

54

Entity-Relationship Model

➢ Entity Set

• An entity set is a set of entities of same type that share the same properties,
or attributes.

• E.g. student can be an entity set that represents all students in the college,
teacher can be an entity set that represents all teachers in the college, etc.

• An entity set do not need to be disjoint.

• E.g. person entity may represent a student entity, teacher entity, both or
neither.

55

Entity-Relationship Model

➢ Weak Entity Set

• A weak entity set is an entity set which cannot be identified by its own
attributes and whose existence is dependent on another entity set.

• The supporting entity set is called identifying entity set of weak entity
set.

• An entity set that is not weak entity set is called as strong entity set.

56

Entity-Relationship Model

➢ Weak Entity Set

• E.g.

• Room is a weak entity set which cannot exist without a building

• Bank account cannot be uniquely identified without associating it to a
particular bank

• Module/Chapter is a weak entity set which needs book, paper

• Insurance Policy requires an employee

• Library is a strong entity set as it can exist without college/university

57

Entity-Relationship Model

➢ Attributes

• An entity is represented by a set of attributes.

• Attributes are descriptive properties possessed by each member of an
entity set.

• The designation of an attribute for an entity set expresses that the
database stores similar information concerning each entity in the entity
set.

• However, each entity may have its own value for each attribute.

• E.g. student can have examSeatNo, name, dept, class, etc. attributes

58

Entity-Relationship Model

➢ Value

• Each entity has a value for each of its attributes.

• E.g. student entity can have value 2050BTECS00001 for examSeatNo,
value Ram for name, value AI & ML for dept, and value First Year for class.

➢ Primary Key

59

Entity-Relationship Model

➢ Types of Attributes

• An attribute in E-R model can be characterized by following types:

▪ Simple and Composite

▪ Single-valued and Multivalued

▪ Derived

60

Entity-Relationship Model

➢ Types of Attributes

• Simple and Composite

▪ An attribute which cannot be further subdivided into component attributes is
called as simple attribute.

▪ E.g. examSeatNo, employeeID, ISBN, accountNo, etc.

▪ An attribute which can be further subdivided into component attributes is
called as composite attribute.

▪ E.g. address (houseNo, streetNo, city, state, country), name(first, middle,
last), phoneNo(STDCode, Number), etc.

61

Entity-Relationship Model

➢ Types of Attributes

• Single-valued and Multivalued

▪ An attribute which takes up only single value for a particular entity is called as
single-valued attribute.

▪ E.g. examSeatNo, age, height, weight, etc.

▪ An attribute which takes up two or more values for a particular entity is called
as multivalued instance.

▪ E.g. mobileNo, emailID, address, course, hobby, etc.

62

Entity-Relationship Model

➢ Types of Attributes

• Derived

▪ An attribute whose value can be derived from other related attributes or
entities is called as derived attribute.

▪ E.g. totalMarks, averageMarks, age, BMI, etc.

63

Entity-Relationship Model

➢ Relationship Set

• An association among several entities is called as relationship.

• E.g. Mr. R. Sharma is a coach of Mr. Virat Kohli

• Relationship set is a set of relationships of the same type.

• E.g. we define relationship set coach to denote the association between
instructor and player.

64

Entity-Relationship Model

1 Ramakant Achrekar

2 Mr. R. Sharma

65

P1 Mr. Sachin Tendulkar

P2 Mr. Virat Kohli

P3 Mr. A. B. C

P4 Mr. X. Y. Z.

Entity-Relationship Model

➢ Degree of Relationship Set

• It is number of entity sets participating in a relationship set.

• There are following degrees exist:

• Unary Relationship

▪ When there is only ONE entity set participating in a relation, the relationship
is called as unary relationship.

▪ For example, one Person is married to only one Person.

▪ The degree of unary relationship is 1.

66

Entity-Relationship Model

➢ Degree of Relationship Set

• Binary Relationship

▪ When there TWO entity sets participating in a relation, the relationship is
called as binary relationship.

▪ For example, Student is enrolled in Course.

▪ The degree of binary relationship is 2.

67

Entity-Relationship Model

➢ Degree of Relationship Set

• Ternary Relationship
▪ When there THREE entity sets participating in a relation, the relationship is

called as ternary relationship.

▪ For example, Student is working on a Project under the guidance of Guide.

▪ The degree of ternary relationship is 3.

• N-ary Relationship
▪ When there n entity sets participating in a relation, the relationship is called

as ternary relationship.

▪ The degree of n-ary relationship is n.

68

Entity-Relationship Model

➢ Mapping Cardinality/Cardinality Ratios

• It expresses the number of entities to which another entity can be
associated via a relationship set.

• The number of times an entity of an entity set participates in a relationship
set is known as cardinality.

• For a binary relationship set R between entity sets A and B, the mapping
cardinality are as follows:

69

Entity-Relationship Model

➢ Mapping Cardinality/Cardinality Ratios

• For a binary relationship set R between entity sets A and B, the mapping
cardinality are as follows:

• One-to-One:

▪ An entity in A is associated with at most one entity in B, and an entity in B is
associated with at most one entity in A.

▪ The cardinality is one to one.

70

Entity-Relationship Model

➢ Mapping Cardinality/Cardinality Ratios

• One-to-Many:

▪ An entity in A is associated with any number (zero or more) of entities in B.
An entity in B, however, can be associated with at most one entity in A.

▪ The cardinality is one to many.

• Many-to-One:

▪ An entity in A is associated with any number (zero or more) of entities in B.
An entity in B, however, can be associated with at most one entity in A.

▪ The cardinality is many to one.

71

Entity-Relationship Model

➢ Mapping Cardinality/Cardinality Ratios

• Many-to-Many:

▪ An entity in A is associated with any number (zero or more) of entities in B,
and an entity in B is associated with any number (zero or more) of entities in
A.

▪ The cardinality is many to many.

72

Entity-Relationship Model

➢ Participation Constraints

• Total Participation

▪ The participation of an entity set E in a relationship set R is said to be total if
every entity in E participates in at least one relationship in R.

• Partial Participation

▪ If only some entities in E participate in relationships in R, the participation
of entity set E in relationship R is said to be partial.

73

Entity-Relationship Model

➢ E-R Diagrams – Basic Structure

• An E-R diagram consists of following components:

• Rectangles divided into two parts: Represent entity sets

74

Entity-Relationship Model

➢ E-R Diagrams – Basic Structure

• Lines: link entity sets to relationship sets.

• Diamonds: Represent Relationship sets

75

Entity-Relationship Model

➢ E-R Diagrams – Basic Structure

• Undivided rectangles: Represent the attributes of a relationship set.

• Dashed lines link attributes of a relationship set to the relationship set.

76

Entity-Relationship Model

➢ E-R Diagrams – Basic Structure

• Double lines indicate total participation of an entity in a relationship set.

• Double diamonds represent identifying relationship sets linked to weak
entity sets

77

Entity-Relationship Model

➢ E-R Diagrams – Basic Structure

• Double rectangle represent weak entity

• Primary key attribute is always underlined. It helps identify each of the
member in an entity uniquely.

78

Entity-Relationship Model

➢ E-R Diagrams – Basic Structure

• One-to-One Relationship

79

Entity-Relationship Model

➢ E-R Diagrams – Basic Structure

• One-to-Many Relationship

80

Entity-Relationship Model

➢ E-R Diagrams – Basic Structure

• Many-to-One Relationship

81

Entity-Relationship Model

➢ E-R Diagrams – Basic Structure

• Many-to-Many Relationship

82

Entity-Relationship Model

➢ E-R Diagrams – Basic Structure

• Mapping Cardinality Limit (Another way)

83

84

References

➢ Abraham Silberschatz, Henry F. Korth and S. Sudarshan, “Database System Concepts”, Mc-Graw Hill,
7th Edition.

85

Module 5
Relational Model and SQL - Part 1

Mr. Swapnil S Sontakke (Asst. Prof.)

Department of Computer Science and Engineering,

Walchand College of Engineering, Sangli

Content

➢ Introduction to Relational Model

➢ Structure of Relational Database

➢Keys

➢Relational Algebra

2

Introduction to Relational Model

➢ Proposed by Dr. E. F. Codd in 1970

➢ Received The Turing Award in 1981

➢ Relational model forms the basis for relational databases i.e. it represents
how data is stored in the relational databases.

➢ In relational model all data is represented in terms of tuples and grouped
into relations.

➢ A database organized in terms of relational model is relational database.

3

Introduction to Relational Model

➢ After designing the conceptual model of Database using ER diagram, we
need to convert the it in the relational model which can be implemented
using any RDMBS languages like Oracle SQL, MySQL, etc.

➢ It is one of the primary data model used for commercial data processing
applications because of its simplicity.

4

Structure of Relational Databases

➢ A database organized in terms of relational model is relational database.

➢ Relations

• A relational database consists of a collection of relations each having a
unique name.

• Relations are also known as tables.

• Data is stored in rows and columns.

5

Structure of Relational Databases

➢ Tuple

• Each row in the table is known as a tuple.

• It represents data related to an entity or object.

• It represents the relationship between the values.

➢ Attribute

• Each column in the table represents the attribute.

• Each column name must have unique attribute name.

6

Structure of Relational Databases

exam_seat_no name Department mobile

2050BTECS001 Ram Computer Science 11111111111

2050BTEEN001 Shyam Electronics 22222222222

2050BTEEL001 Ganesh Electrical 33333333333

2050BTECV001 Ravi Civil 44444444444

2050BTEME001 Mahesh Mechanical 55555555555

7

Table 1. Student relation (table)

Structure of Relational Databases

➢ Domain

• For each column/attribute of table, there is a set of permitted values
called as domain of that attribute.

• E.g. For the attribute exam_seat_no, domain is set of all exam seat
numbers, for name, it is a set of all possible names.

• A domain is said to be atomic if elements of the domain are considered to
be indivisible units.

• E.g. phone_number: it can have multiple values and even its single value
can be sub divided (into country code, area code, and local number)

8

Structure of Relational Databases

➢ Domain

• null value is a special values that signifies that the value is unknown or
does not exist.

• E.g. It may be possible that value for phone_number for student relation
may not exist or is unlisted.

9

Structure of Relational Databases

➢ Database Schema

• It is a logical design of a database.

• In general, it is physical level, logical level and view level.

➢ Database Instance

• It is a snapshot of the data in the database at a given instant in time.

10

Structure of Relational Databases

➢ Relation Schema

• It is a programming language notion of type definition.

• It consists of a list of attributes and their corresponding domains.

• In general, it does not change with time.

➢ Relation Instance

• It is a programming language notion of a value of a variable.

• It refers to a specific instance of a relation that contains a specific set of rows.

• They do not contain duplicate values.

• In general, it changes with time as the relation is updated.

11

Structure of Relational Databases

12

Fig. 1. Sample Relation Schema

Structure of Relational Databases

➢ Relation Instance

• E.g.

student (st_id, st_nm, st_email, st_dept, st_course)

teacher (tr_id, tr_nm, tr_email, tr_dept, tr_course)

teaches (tr_id, course_id, dept, sem, year)

13

Keys

➢ A relation consists of large number of tuples.

➢ Each tuple has a set of values for given set of attributes/columns.

➢ To uniquely identify every tuple, attribute values should be uniquely
specified.

➢ These attributes that are used to uniquely identify tuples in the relation are
called as keys.

➢ There are following types of keys: Superkey, candidate key, primary key and
foreign key

14

Keys

➢ Superkey

• A superkey is a set of one or more attributes that, taken collectively, allows
us to identify uniquely a tuple in a relation.

• E.g. In STUDENT (examSeatNo, stName, stMobile, stBranch) relation,

an attribute examSeatNo is a superkey as it is sufficient to identify one
student record (tuple) from another.

However, stName or stBranch cannot be a superkey as values for both
the attributes may be same.

{examSeatNo, stName} or {examSeatNo, stMobile}, {examSeatNo,
stBranch} are also superkeys for STUDENT relation

15

Keys

➢ Candidate key

• A candidate key is a minimal set of attributes which can uniquely identify a
tuple in a relation.

• In general, superkey may contain extraneous attributes like stName in
{examSeatNo, stName}

• If K is a superkey, any of its superset is also a superkey.

• But, candidate key is a minimal superkeys for which no proper subset is a
superkey.

16

Keys

➢ Candidate key

• E.g. In STUDENT (examSeatNo, stName, stMobile, stBranch) relation.

Some Superkeys are: {examSeatNo}, {examSeatNo, stName}, {examSeatNo,
stMobile} and {examSeatNo, stBranch}.

{stName, stMobile} is also sufficient to uniquely identify the tuple in
STUDENT.

So, Candidate keys are: {examSeatNo} and {stName, stMobile}.

Remaining keys are only superkeys and not candidate kays as they contain
{examSeatNo} which alone is a candidate key.

17

Keys

➢ Candidate key

• E.g. In EMPLOYEE (employeeID, empName, empSalary, empPAN,
empAadharNo) relation.

So, Candidate keys are: {employeeID}, {empPAN} and {empAadharNo}.

All other combinations of attributes may form superkeys such as

{employeeID, empName}, {empName, empPAN}, etc.

18

Keys

➢ Points to remember

• A superkey is a superset of candidate keys, but vice versa is not true.

• There can be one or more superkeys in a relation.

• There can be one or more candidate keys in a relation.

• Superkey and candidate key cannot be null.

• Adding 0 or more attributes in a candidate key generates superkey.

• Superkey and candidate can be simple or composite.

19

Keys

➢ Primary key

• A primary key is a candidate key that is chosen by the database designer as
a principal means of identifying tuples in within a relation.

• There can be only one primary key for a relation (chosen out of many
candidate keys).

• The candidate key other than primary key is called as alternate key.

• E.g. In STUDENT relation, examSeatNo is a primary key.

In EMPLYEE relation, employeeID is a primary key.

• Primary key cannot be null and duplicate.

20

Keys

➢ Foreign key

• A foreign-key constraint from attribute(s) A of relation r1 to the primary-
key B of relation r2 states that on any database instance, the value of A for
each tuple in r1 must also be the value of B for some tuple in r2.

• Attribute set A is called a foreign key from r1, referencing r2.

• The relation r1 is also called the referencing relation of the foreign-key
constraint, and r2 is called the referenced relation.

• In simple words, foreign keys are the column of one table which is used to
point to the primary key of another table.

21

Keys

22

student

examSeatNo

fullName

departmentID

Class

emailAddress

department

departmentID

departmentName

estdYear

Referencing Relation

Referenced Relation

Primary KeyForeign Key

Keys

➢ Points to Remember

• Primary key cannot be null and duplicate.

• A foreign key can be null as well as may contain duplicate values.

• Primary keys are also referred to as primary key constraints.

• Primary key attributes are underlined.

• A referential integrity constraint requires that the values appearing in
specified attributes of any tuple in the referencing relation also appear in
specified attributes of at least one tuple in the referenced relation.

23

Relational Query Languages

➢ Query Language

• It is a language in which a user requests information from the database.

• There are three types of query languages:

▪ Imperative

▪ Functional

▪ Declarative

24

Relational Query Languages

➢ Imperative Query Language

• In imperative query language, the user instructs the system to perform a
specific sequence of operations on the database to compute the desired
result.

• It uses the state variables, which are updated in the course of the
computation.

• Requires deep technical and language knowledge.

• They are not user friendly and may prone to human error.

• E.g. No pure imperative query languages, Gremlin and JavaAPI (for Neo4j)

25

Relational Query Languages

➢ Functional Query Language

• In functional query language, the computation is expressed as the
evaluation of functions that may operate on data in the database or on the
results of other functions.

• The functions are side-effect free, and they do not update the program
state.

• E.g. Relational Algebra which forms the basis for SQL language

26

Relational Query Languages

➢ Declarative Query Language

• In declarative query language, the user describes the desired information
without giving a specific sequence of steps or function calls for obtaining
that information.

• The desired information is typically described using some form of
mathematical logic.

• It is the job of the database system to figure out how to obtain the desired
information.

• E.g. Tuple relational calculus, domain relational calculus and SQL

27

Relational Query Languages

➢ Declarative Query Language

• SQL actually includes the elements of imperative, functional and
declarative approaches.

28

Relational Algebra

➢ The relational algebra consists of a set of operations that take or two
relations as inputs and produce a new relation as their result.

➢ The operations can be either unary or binary.

➢ Unary operations are those which operate on only one relation to produce a
desired result.

➢ Select, project and rename operations are unary operations.

➢ Binary operations are those which operate on a pair relations to produce a
desired result.

➢ Union, Cartesian-Product and set difference are binary operations.

29

Relational Algebra

➢ The Select operation

• This is a unary operation used select tuples that satisfy the given
predicate.

• It is denoted by lowercase Greek letter sigma (σ).

• The predicate appears as a subscript to σ and the argument relation is in
the parenthesis after the σ.

• In general, comparisons are allowed using =, ≠, <, ≤, > and ≥.

• Several predicates can be combined into larger one using and(⋀), or(⋁)
and not (¬) operators.

30

Relational Algebra

➢ The Select operation

• E.g. 1. Select all the tuples of instructor relation where instructor is in
Physics department.

σdept_name=“Physics” (instructor)
• E.g. 2. Select all the tuples of instructor relation where instructor has

salary greater than 90000

σsalary>90000 (instructor)

31

Relational Algebra

➢ The Select operation

• E.g. 3. Select all the tuples of instructor relation where instructor is in
Physics department and has salary greater than 90000.

σdept_name=“Physics” ⋀ salary > 90000 (instructor)
• E.g. Select all the tuples of department relation where department name is

same as building name.

σdept_name=building (department)

32

Relational Algebra

ID name dept_name salary

1 A Mechanical 90000

2 B Electrical 80000

3 C Physics 75000

4 D Physics 150000

5 E Civil 200000

6 F Electronics 300000

33

Table 2. instructor relation

Relational Algebra

ID name dept_name salary

3 C Physics 75000

4 D Physics 150000

34

Table 2-1. Output of the E.g.1

Relational Algebra

ID name dept_name salary

4 D Physics 150000

5 E Civil 200000

6 F Electronics 300000

35

Table 2-2. Output of the E.g.2

Relational Algebra

ID name dept_name salary

4 D Physics 150000

36

Table 2-3. Output of the E.g.3

Relational Algebra

➢ The Project operation

• This is a unary operation used return its argument relation with certain
attributes left out.

• That is this operation shows the list of those attributes that we wish to
appear in the result.

• It is denoted by uppercase Greek letter pi (Π).

• The predicate appears as a subscript to Π and the argument relation is in
the parenthesis after the Π.

37

Relational Algebra

➢ The Project operation

• E.g. 1. (Refer Table 2) Return ID, name and salary from instructor relation.

ΠID, name, salary (instructor)
• A basic version of project operation ΠL (E) allows only attributes names

to be present in the list (L) but generalised version allows expressions
involving attributes to appear in the list (L).

• E.g. To get monthly salary of instructor:

ΠID, name, salary/12 (instructor)

38

Relational Algebra

ID name salary

1 A 90000

2 B 80000

3 C 75000

4 D 150000

5 E 200000

6 F 300000

39

Table 2-4. Output of the E.g. 1 of Project Operation

Relational Algebra

➢ The Composition of Relational Operations

• Fact: The result of a relational operation is itself a relation.

• Because of this fact, these operations can be composed together into a
relational algebra expression.

• For e.g., To find the names of all instructors in the Physics department:

Πname (σdept_name=“Physics” (instructor))
Here there is no relation name given as an argument of project operation.
Instead, expression is given that evaluates to a relation.

40

Relational Algebra

➢ The Rename operation

• In general, results of relational-algebra expressions do not have name.

• But, if you want to give the name to the result rename operation is used.

• This is unary operation and is denoted by lowercase Greek letter rho (ρ).

• E.g. Given relational algebra expression E,

ρx (E)
returns the result of expression E under the name x

41

Relational Algebra

➢ The Rename operation

• Another form includes a relational algebra expression E with arity n.

ρx(A1, A2, …, An) (E)
returns the result of expression E under the name x and with the attributes

names renamed to A1, A2, …, An.

E.g. Find the ID and name of those instructors who earn more than the
instructor whose ID is 1.

Πi.ID, i.name ((σi.salary > w.salary (ρi(instructor) × σw.ID=1 (ρw(instructor)))))

42

Relational Algebra

➢ The Cartesian-Product operation

• The Cartesian-Product operation allows us to combine information from
any two relation.

• It is denoted by a Cross (×).

• E.g. Cartesian-Product of relation r1 and r2 is r1×r2.

• A Cartesian-Product of set produces pairs but a Cartesian-Product of
database relations concatenates two tuples t1 and t2 into a single tuple.

• This is a binary operation.

43

Relational Algebra

➢ The Cartesian-Product operation

• As the same attribute name may appear in the both relations, we use
following naming schema:

• E.g. The relation schema r = instructor × teaches is

(instructor.ID, instructor.name, instructor.dept_name, instructor.salary,
teaches.ID, teaches.course_ID, teaches.sec_ID, teaches.semester, teaches.year)

• Relation name is dropped for the tttributes that appear in only one
relation.

• (instructor.ID, name, dept_name, salary, teaches.ID, course_ID, sec_ID,
semester, year)

44

Relational Algebra

➢ The Cartesian-Product operation

• What tuples appear in r, if r = instructor × teaches?

• r contains each possible pair of tuples: one from instructor relation and
another from teaches relation.

• i.e. if instructor has n1 tuples and teaches has n2 tuples then resulting
relation r will have n1*n2 tuples in it.

45

Relational Algebra

ID name dept_name salary

1 A Mechanical 90000

2 B Electrical 80000

3 C Physics 75000

4 D Physics 150000

5 E Civil 200000

6 F Electronics 300000

46

Table 2. instructor relation

Relational Algebra

ID course_ID sec_ID semester year

1 CV1 A1 1 First

2 ME2 A1 2 First

3 EL1 B1 1 Second

4 ET2 B2 2 Third

5 CS1 C1 1 Final

5 CS2 C2 2 Final

47

Table 3. teaches relation

Relational Algebra

48

Table 4. r = instructor × teaches

ID name dept_name salary ID course_ID sec_ID semester year

1 A Mechanical 90000 1 CV1 A1 1 First

1 A Mechanical 90000 2 ME2 A1 2 First

1 A Mechanical 90000 3 EL1 B1 1 Second

1 A Mechanical 90000 4 ET2 B2 2 Third

1 A Mechanical 90000 5 CS1 C1 1 Final

1 A Mechanical 90000 5 CS2 C2 2 Final

2 B Electrical 80000 1 CV1 A1 1 First

2 B Electrical 80000 2 ME2 A1 2 First

… … … … … … … … …

Relational Algebra

➢ The Join operation

• Cartesian-product operation associates every tuple of one relation with
every tuple of another relation regardless of their actual association.

• A join operation is binary operation which combines related tuples from
different relations, if and only if the given condition is specified.

• A join operation allows us to combine a selection and a Cartesian-Product
operation into a single operation.

49

Relational Algebra

➢ The Join operation

• If r1 and r2 are two relations, then join operation can be represented as

r1 ⋈θ r2

and it is defined as

r1 ⋈θ r2 = σϴ (r1 × r2)

where, ϴ is a predicate and × is Cartesian-Product of r1 and r2

It can also be written as

r1 ⋈θ r2

50

Relational Algebra

➢ The Join operation

• E.g. find the information about all instructors together with the course_id
of all courses they have taught.

• It is represented as

σinstructor.ID=teaches.ID(instructor × teaches)

• This states that take Cartesian-Product of instructor and teaches, and then
select all tuples from the resulting relation where instructor.ID matches
with the teaches.ID

51

Relational Algebra

ID name dept_name salary

1 A Mechanical 90000

2 B Electrical 80000

3 C Physics 75000

4 D Physics 150000

5 E Civil 200000

6 F Electronics 300000

52

Table 5. instructor relation

Relational Algebra

ID course_ID sec_ID semester year

1 CV1 A1 1 First

1 CV2 A1 2 First

3 EL1 B1 1 Second

4 ET2 B2 2 Third

5 CS1 C1 1 Final

5 CS2 C2 2 Final

53

Table 6. teaches relation

Relational Algebra

54

Table 7. instructor × teaches

ID name dept_name salary ID course_ID sec_ID semester year

1 A Mechanical 90000 1 CV1 A1 1 First

1 A Mechanical 90000 1 CV2 A1 2 First

1 A Mechanical 90000 3 EL1 B1 1 Second

1 A Mechanical 90000 4 ET2 B2 2 Third

1 A Mechanical 90000 5 CS1 C1 1 Final

1 A Mechanical 90000 5 CS2 C2 2 Final

2 B Electrical 80000 1 CV1 A1 1 First

2 B Electrical 80000 1 CV2 A1 2 First

… … … … … … … … …

Relational Algebra

55

Table 8. r = instructor ⋈ teaches

ID name dept_name salary ID course_ID sec_ID semester year

1 A Mechanical 90000 1 CV1 A1 1 First

1 A Mechanical 90000 1 CV2 A1 2 First

3 C Physics 75000 3 EL1 B1 1 Second

4 D Physics 150000 4 ET2 B2 2 Third

5 E Civil 200000 5 CS1 C1 1 Final

5 E Civil 200000 5 CS2 C2 2 Final

Relational Algebra

➢ The Set operations - Union

• Union operation combines results of two or more relational algebra
operations and provides a single relation as its output.

• It is denoted as ∪.

• If r and s are two relations then their union is

r ∪ s

• It displays the attributes or tuples that are present in either or both of the
relations.

56

Relational Algebra

➢ The Set operations - Union

• E.g. Find the set of all courses taught in the Fall of 2017 semester, Spring
2018 semester or both semesters.

• To find the set of all courses taught in the Fall of 2017, we write

Πcourse_id (σsemester=“Fall” ⋀ year=2017 (section))
• To find the set of all courses taught in the Spring of 2018, we write

Πcourse_id (σsemester=“Spring” ⋀ year=2018 (section))

57

Relational Algebra

➢ The Set operations - Union

• E.g. Find the set of all courses taught in the Fall of 2017 semester, Spring
2018 semester or both semesters.

• Finally their union can be written as

Πcourse_id (σsemester=“Fall” ⋀ year=2017 (section)) ⋃

Πcourse_id (σsemester=“Spring” ⋀ year=2018 (section))

58

Relational Algebra

ID course_id sec_id semester year

1 CV1 1 Fall 2017

1 CV2 1 Spring 2017

2 CS1 2 Summer 2018

3 EL1 2 Winter 2017

3 EL2 1 Fall 2017

4 ET1 1 Spring 2018

4 ET2 2 Spring 2018

5 ME1 2 Summer 2018

6 ME2 1 Fall 2017

59

Table 9. section relation

Relational Algebra

course_id

CV1

EL2

ET1

ET2

ME2

60

Table 10. union of given statement

Relational Algebra

➢ The Set operations - Intersection

• Intersection operation allows us to find the tuples that are present in
both input relations.

• It is denoted as ∩.

• E.g. If r and s are two relations then their intersection is

r ∩ s

61

Relational Algebra

➢ The Set operations - Intersection

• E.g. Find the set of all courses taught in the Fall of 2017 semester and
Spring 2018 semester.

• To find the set of all courses taught in the Fall of 2017, we write r as

Πcourse_id (σsemester=“Fall” ⋀ year=2017 (section))
• To find the set of all courses taught in the Spring of 2018, we write s as

Πcourse_id (σsemester=“Spring” ⋀ year=2018 (section))

62

Relational Algebra

➢ The Set operations - Intersection

• E.g. Find the set of all courses taught in the Fall of 2017 semester and
Spring 2018 semester.

• Finally their intersection r ∩ s can be written as

Πcourse_id (σsemester=“Fall” ⋀ year=2017 (section)) ⋂

Πcourse_id (σsemester=“Spring” ⋀ year=2018 (section))

63

Relational Algebra

ID course_id sec_id semester year

1 CV1 1 Fall 2017

1 CV2 1 Spring 2017

2 CS1 2 Summer 2018

3 EL1 2 Winter 2017

3 EL2 1 Fall 2017

4 ET1 1 Spring 2018

4 CV1 2 Spring 2018

5 ME1 2 Summer 2018

6 ME2 1 Fall 2017

64

Table 11. section relation

Relational Algebra

course_id

CV1

65

Table 12. intersection of given statement

Relational Algebra

➢ The Set operations – set-difference

• Set-difference operation allows us to find the tuples that are present in
one relation but are not in the other relation.

• It is denoted as –.

• E.g. If r and s are two relations then their set-difference is

r – s

which produces a relation containing those tuples in r but not in s.

66

Relational Algebra

➢ The Set operations – set-difference

• E.g. Find all the courses taught in the Fall 2017 semester but not in Spring
2018 semester.

• To find the set of all courses taught in the Fall of 2017, we write r as

Πcourse_id (σsemester=“Fall” ⋀ year=2017 (section))
• To find the set of all courses taught in the Spring of 2018, we write s as

Πcourse_id (σsemester=“Spring” ⋀ year=2018 (section))

67

Relational Algebra

➢ The Set operations – set-difference

• E.g. Find all the courses taught in the Fall 2017 semester but not in Spring
2018 semester.

• Finally their set-difference r – s can be written as

Πcourse_id (σsemester=“Fall” ⋀ year=2017 (section)) –

Πcourse_id (σsemester=“Spring” ⋀ year=2018 (section))

68

Relational Algebra

ID course_id sec_id semester year

1 CV1 1 Fall 2017

1 CV2 1 Spring 2017

2 CS1 2 Summer 2018

3 EL1 2 Winter 2017

3 EL2 1 Fall 2017

4 ET1 1 Spring 2018

4 CV1 2 Spring 2018

5 ME1 2 Summer 2018

6 ME2 1 Fall 2017

69

Table 13. section relation

Relational Algebra

course_id

EL2

ME2

70

Table 13. set-difference of given

statement

Relational Algebra

➢ The Set operations – Points to remember

• For union, intersection and set difference operations to make sense:

▪ We must ensure that the input relations to the union operation have
the same number of attributes; the number of attributes of a relation is
referred to as its arity.

▪ When the attributes have associated types, the types of the ith

attributes of both input relations must be the same, for each i.

• Such relations are referred to as compatible relations.

71

Relational Algebra

➢ The assignment operation

• For ease of understanding and convenience, parts of a relational algebra
expression can be assigned to temporary relation variables.

• This can be done with the help of assignment operator which is denoted
as ←.

• It works like assignment operator in programming language.

72

Relational Algebra

➢ The assignment operation

• E.g. Find the set of all courses taught in the Fall of 2017 semester, Spring
2018 semester or both semesters. We could write it as:

courses_fall_2017 ← Πcourse_id (σsemester=“Fall” ⋀ year=2017 (section))

courses_spring_2018 ← Πcourse_id (σsemester=“Spring” ⋀ year=2018 (section))

And

courses_fall_2017 ⋃ courses_spring_2018

73

References

➢ Abraham Silberschatz, Henry F. Korth and S. Sudarshan, “Database System Concepts”, Mc-Graw Hill,
7th Edition.

➢ https://en.wikipedia.org/wiki/Edgar_F._Codd

➢ https://www.geeksforgeeks.org/relational-model-in-dbms/

➢ https://www.javatpoint.com/dbms-relational-model-concept

➢ https://www.geeksforgeeks.org/relation-schema-in-dbms/

74

https://en.wikipedia.org/wiki/Edgar_F._Codd
https://www.geeksforgeeks.org/relational-model-in-dbms/
https://www.javatpoint.com/dbms-relational-model-concept
https://www.geeksforgeeks.org/relation-schema-in-dbms/

Module 5
Relational Model and SQL - Part 2

Mr. Swapnil S Sontakke (Asst. Prof.)

Department of Computer Science and Engineering,

Walchand College of Engineering, Sangli

Content

➢ Introduction to SQL

➢ SQL Data Definition

➢ SQL Operators

➢Aggregate Functions

➢Modification of the Database

➢Basic Structure of SQL Queries

➢ Set Operations

➢Nested Subqueries

2

Introduction to SQL

➢ Original version called ‘Sequel’ was developed by IBM as a part of System R
project in 1974.

➢ Later the name changed to SQL (Structured Query Language)

➢ SQL was standardized in 1986 by ANSI and ISO, called SQL-86.

➢ Recent version of standard is SQL:2016 (stable)

➢ SQL has clearly established itself as the standard relational database
language.

3

Introduction to SQL

➢ SQL language has several parts:

• Data Definition Language (DDL)

▪ Has commands for defining relation schemas, deleting relations and
modifying relation schemas

• Data Manipulation Language (DML)

▪ Provides commands to retrieve the information from the database and to
insert tuples into, delete tuples from and modify tuples in the database

4

Introduction to SQL

➢ SQL language has several parts:

• Integrity

▪ Provides commands for specifying the integrity constraints that the data
stored in the database must satisfy

▪ Operations that violates integrity constraints are not allowed.

• View Definition

▪ Provides commands for defining views

5

Introduction to SQL

➢ SQL language has several parts:

• Transaction Control

▪ Provides commands for specifying the beginning and end points of
transactions

• Authorization

▪ Provides commands for specifying access rights to relations and views

6

Introduction to SQL

➢ SQL language has several parts:

• Embedded SQL and Dynamic SQL

▪ Embedded and Dynamic SQL define how SQL statements can be embedded
within general-purpose programming languages, such as C, C++, Java,
Python, etc.

7

SQL Data Definition

➢ The set of relations in the database are specified using Data Definition
Language (DDL).

➢ DDL also specifies the following information about each relation:

• The schema for the relation

• The types of values associated with each attribute

• The integrity constraints

• The set of indices to be maintained for each relation.

• The security and authorization information for each relation.

• The physical storage structure of each relation on disk.

8

SQL Data Definition

➢ Basic Types

➢ SQL supports a variety of built-in types. Some of them are:

• char(n): character: A fixed-length character string with user-defined
length n

• varchar(n): character varying: A variable-length character string with
user-defined maximum length n

• int: integer: a finite subset of the integers that is machine dependent

• smallint: A small integer: a machine-dependent subset of the integer type

9

SQL Data Definition

➢ Basic Types

➢ SQL supports a variety of built-in types. Some of them are:

• Numeric(p,d): A fixed-point number with user-defined length precision.
The number consists of p digits in total (plus a sign) and d of the p digits
are to the right of the decimal points.

• Real, double precision: Floating-point and double-precision floating-point
numbers with machine-dependent precision

• float(n): A floating-point number with precision of at least n digits

10

SQL Data Definition

➢ Basic Schema Definition

➢ SQL relation can be defined using create table command.

➢ The general form of create command is

11

Fig. 1 General form of
create table

SQL Data Definition

➢ Basic Schema Definition

➢ Here,

Each Ai is an attribute name,

Each Di specifies the domain of attribute Ai

➢ Some of the integrity constraints are

• primary key (Aj1
…Ajn

)

• Foreign key (Ak1
…Akn

) references s

• not null

12

SQL Data Definition

➢ Basic Schema Definition

➢ Example: instructor relation

13

Fig. 2 create instructor table

SQL Data Definition

➢ Basic Schema Definition

➢ Example: department relation

14

Fig. 3 create department table

SQL Data Definition

➢ Basic Schema Definition

• A newly created relation is empty initially.

• Inserting tuples into a relation, updating them, and deleting them are
done by data manipulation statements insert, update, and delete

15

SQL Data Definition

Demonstration

16

SQL Data Definition

➢ Basic Schema Definition

• drop table

• To remove a relation from an SQL database drop table command is used.

• This command deletes all information about the dropped relation from
the database.

• This deletes all tuples from table as well the table.

• E.g. drop table table_name;

drop table instructor;

17

SQL Data Definition

➢ Basic Schema Definition

• delete from

• This command deletes all tuples from the relation but do not delete table.

• Table becomes empty

• E.g. delete from table_name;

delete from instructor;

18

SQL Data Definition

➢ Basic Schema Definition

• alter table

• This command is used to alter the table i.e. to add new attributes to
existing relation or drop attributes from a relation.

• E.g. alter table table_name add A D;

• This will add attribute A with its domain D in the specified table.

• E.g. alter table table_name drop A;

• This will drop an attribute A from specified table.

19

SQL Data Definition

Demonstration

20

SQL Data Definition

➢ Demonstration

➢ Offline Tool

• XAMPP

➢ Online Compiler

• https://www.w3schools.com/sql/trysql.asp?filename=trysql_op_in

21

SQL Operators

➢ SQL supports following operators that can be combined with queries.

• Arithmetic (+,-,*,/ and %)

• Bitwise (&, | and ^)

• Comparison (=, >, >=, <, <= and <>)

• Compound (+=, -=, etc.)

• Logical

▪ ALL - TRUE if all of the subquery values meet the condition

▪ AND - TRUE if all the conditions separated by AND is TRUE

▪ ANY - TRUE if any of the subquery values meet the condition

22

SQL Operators

➢ SQL supports following operators that can be combined with queries.

• Logical

▪ BETWEEN - TRUE if the operand is within the range of comparisons

▪ EXISTS - TRUE if the subquery returns one or more records

▪ IN - TRUE if the operand is equal to one of a list of expressions

▪ LIKE - TRUE if the operand matches a pattern

▪ NOT - Displays a record if the condition(s) is NOT TRUE

▪ OR - TRUE if any of the conditions separated by OR is TRUE

▪ SOME - TRUE if any of the subquery values meet the condition

23

SQL Aggregate Functions

➢ Aggregate functions are functions that take a collection (a set or multiset)
of values as input and return a single value.

➢ SQL offers five standard built-in aggregate functions:

• Average (avg)

• Minimum (min)

• Maximum (max)

• Total (sum)

• Count (count)

24

Modification of the Database

➢ Modification of database includes the commands to add, remove and update
the database information.

➢ Insertion

• To insert data into a relation, we need to specify a tuple to be inserted.

• The attribute values for inserted tuples must be members of the
corresponding attribute’s domain.

• Command used for inserting a tuple is

insert into table_name values (‘value 1’, ‘value 2’, …, ‘value N’);

25

Modification of the Database

26

Fig. 4 department table

Modification of the Database

➢ To insert a tuple into ‘department’ relation we write

insert into department values (‘Civil’, ‘Wing-A’, 2500000.00);

Insert into department values (‘Mechanical’, ‘Wing-B’, 2500000.00);

➢ Here order of values is important.

➢ Values should be specified in the order in which the corresponding
attributes are listed in the relation schema.

➢ To ease this process, another way to write insert query is

27

Modification of the Database

insert into department (dept_name, building, budget)

values (‘Civil’, ‘Wing-A’, 2500000.00);

Insert into department (dept_name, building, budget)

values (‘Mechanical’, ‘Wing-B’, 2500000.00);

28

Modification of the Database

➢ Deletion

➢ We can delete whole tuple from the relation using delete command.

➢ We cannot delete values on only particular attributes.

➢ The general form of deletion in SQL is

delete from r

where P;

29

Modification of the Database

➢ Deletion

➢ Here, P represents a predicate and r represents a relation.

➢ The delete statement first finds all the tuples t in r for which P(t) is true and
then deletes them from r.

30

Modification of the Database

➢ Deletion

➢ from clause

• The from clause is a list of the relations to be accessed in the evaluation of
the query.

➢ where clause

• The where clause is a predicate involving attributes of the relation in the
from clause.

• In deletion, if where clause is omitted then whole relation i.e. all tuples
from the specified relation will be deleted.

31

Modification of the Database

➢ Deletion

➢ E.g. To delete all tuples from department relation, we write

delete from department;

To delete tuples where dept_name is Civil, we write

delete from department

where dept_name=‘Civil’;

32

Modification of the Database

➢ Deletion

➢ E.g. To delete tuples where dept_name is Civil, we write

delete from department

where dept_name=‘Civil’;

To delete tuples where budget is between 100000 and 200000, we write

delete from department

where budget between 100000 AND 200000;

33

Modification of the Database

➢ Updates

➢ To update/change the particular value of a tuple without changing all values
of that tuple, update statement is used.

➢ Similar to the insert and delete, we can update any tuple in a relation using
a query.

➢ The general form of update is

update table_name

set A = <new value>;

34

Modification of the Database

➢ Updates

➢ E.g. To update budget of all departments by 5%,

update department

set budget=budget*1.05;

To update budget of departments by 5% where current budget is 150000.00 or
less

update department

set budget=budget*1.05

where budget <=150000.00

35

SQL Data Definition

Demonstration

36

Basic Structure of SQL Queries

➢ A basic structure of an SQL query consists of three clauses: select, from and
where.

➢ A query takes as its input the relations listed in the from clause, operates on
them as specified in the where and select clauses, and then produces a
relation as the result.

➢ Select clause will return relation based on the predicate specified in the
where clause.

➢ It performs the select and project operations of relational algebra.

37

Basic Structure of SQL Queries

➢ Queries on a Single Relation

• Here, only one relation will be specified in the query.

• The general form is

select A1, A2, …, An

from table_name

where P;

38

Basic Structure of SQL Queries

➢ Queries on a Single Relation

• E.g. Find the department names of all instructors

select dept_name

from instructor;

• If we don’t want duplicates, then distinct keyword is used after select.

• E.g. For the above query, if we want department name only once then

select distinct dept_name

from instructor;

39

Basic Structure of SQL Queries

➢ Queries on a Single Relation

• If we want duplicates, then all keyword is used after select which
explicitly specifies that include duplicates in the resulting relation.

• E.g. For the above query, if we want all department names then we write

select all dept_name

from instructor;

• By default SQL allows duplicates, so we don’t need to use all keyword.

• But, distinct keyword is mandatory if we don’t want duplicates.

40

Basic Structure of SQL Queries

➢ Queries on a Single Relation

• Select clause may also contain arithmetic expressions involving +,-,* and /
operators

• E.g. Following query returns a relation that is same as the instructor
relation, except the salary is incremented by 10%.

select ID, name, dept_name, salary*1.1

from instructor;

41

Basic Structure of SQL Queries

➢ Queries on a Single Relation

• The where clause allows us to select only those rows in the resulting
relation of the from clause that satisfy a specified predicate.

• E.g. To find the names of all instructors in the Electrical department who
have salary greater than $70,000

select name

from instructor

where dept_name=‘Electrical’ and salary > 70000

42

Basic Structure of SQL Queries

➢ Queries on a Single Relation

• The where clause may also include comparison and logical operators as
you can see in the above example.

43

Basic Structure of SQL Queries

➢ Queries on a Multiple Relations

• A single SQL query can specify two or more relations.

• The general form is

select A1, A2,…, An

from r1, r2,…, rm

where P;

• Each Ai represents an attribute, and each ri a relation. P is a predicate. If
the where clause is omitted, the predicate P is true.

44

Basic Structure of SQL Queries

➢ Queries on a Multiple Relations

• E.g. To retrieve the names of all instructors, along with their department
names and department building name, we write

select name, instructor.dept name, building

from instructor, department

where instructor.dept name=department.dept name;

45

Basic Structure of SQL Queries

➢ Queries on a Multiple Relations

• In the similar manner, we can retrieve the Cartesian-Product of any
two(or more) relations.

• E.g. Cartesian-Product of instructor and department can be written as

select ID, name, instructor.dept name, salary, department.dept_name,
building, budget

from instructor, department

46

Basic Structure of SQL Queries

➢ Queries on a Multiple Relations

• To retrieve all the attributes of a relation we use *.

• E.g. To retrieve the all attributes of instructor and department relation we
write

select * from instructor, department;

Or

select instructor.*, department.*

from instructor, department;

47

Basic Structure of SQL Queries

➢ Ordering the Resulting Relation

• The order by clause causes the tuples in the result of a query to appear in
sorted order.

• E.g. To retrieve the all attributes of department relation sorted based on
the dept_name, we write

select * from department

order by dept_name;

48

Basic Structure of SQL Queries

➢ The Rename Operation

• The rename operation is used to rename the attributes or relations in
the query.

• To rename we use as clause.

• It can be used in both select and from clause.

• E.g. To retrieve the name as instructor_name from instructor relation, we
write

select name as instructor_name

from instructor;

49

Basic Structure of SQL Queries

➢ The Rename Operation

• E.g. To retrieve the name as instructor_name and dept_name from
instructor as T relation, we write

select T.name as instructor_name, T.dept_name

from instructor as T;

50

SQL Data Definition

Demonstration

51

Basic Structure of SQL Queries

➢ Set Operations

• The mathematical set operations union, intersection and set intersection
can be represented in SQL with the help of union, intersection and
except.

➢ Union

• This operation combines results of two select statements and provides a
single result.

• It by default, automatically removes all the duplicates.

• To retain duplicates, use union all.

52

Basic Structure of SQL Queries

➢ Union

• E.g. To find the set of all courses taught in the Fall 2017, Spring 2018 or in both,
we write

(select course id

from section

where semester = 'Fall' and year= 2017)

union

(select course id

from section

where semester = 'Spring' and year= 2018);

53

Basic Structure of SQL Queries

➢ Union

• Some databases allow parenthesis for each separate part of statements
and some don’t.

• Parenthesis are useful for ease of reading.

54

Basic Structure of SQL Queries

➢ Intersect

• This operation combines results of two select statements and provides a
single result.

• It returns the common tuples from two (or more) relations.

• It by default, automatically removes all the duplicates.

• To retain duplicates, use intersect all.

55

Basic Structure of SQL Queries

➢ Intersect

• E.g. To find the set of all courses taught in both the Fall 2017 and Spring 2018,

(select course id

from section

where semester = 'Fall' and year= 2017)

intersect

(select course id

from section

where semester = 'Spring' and year= 2018);

56

Basic Structure of SQL Queries

➢ except

• This operation combines results of two select statements and provides a
single result.

• It returns the tuples from that are present in one relation but not present
in another relation.

• It by default, automatically removes all the duplicates.

• To retain duplicates, use except all.

57

Basic Structure of SQL Queries

➢ except

• E.g. To find the set of all courses taught in the Fall 2017 but not in Spring 2018,

(select course id

from section

where semester = 'Fall' and year= 2017)

except

(select course id

from section

where semester = 'Spring' and year= 2018);

58

References

➢ Abraham Silberschatz, Henry F. Korth and S. Sudarshan, “Database System Concepts”, Mc-Graw Hill,
7th Edition.

59

