Module 1 Introduction to Software
Engineering Basics - Part 3

Mr. Swapnil S Sontakke (Asst. Prof.)
Department of Computer Science and Engineering,
Walchand College of Engineering, Sangli

=
=
(b
-
=
=)
-

Other Software
Processes

Other Software Process

ctivities in the

72
7
<,
O
=
=
=5
<3,
o
:
=
=
90
o
Q
—
e
-

Other Software Process

t, quality and
>ment Process.

Other Software Process

<)

o

- =

]

L)
Tasi

e

)

. oy
gyl
q 0}

)
[=]

ab)

|
)

-

vEQ

oV

dp)

@)
N

N
=

D)

o

[.8 S

ob)

——

=

Other Software Process

lanning
@ J

P

Other Software Process

72
7
<,
O
=
=
=5
<3,
o
:
=
=
90
o
Q
—
e
-

Other Software Process

1ent has to

nd development

Other Software Process

Other Software Process

Other Software Process

Other Software Process

A4AAAaAl b

» Also called as postmortem analysis

Other Software Process

Termination
Planning Monitoring and Control Analysis
Management

Process

Development
Process

Metric
I Values

: Management
¥ Control

Fig. 1 Temporal Relationship Between Development and Management Process

16

Other Software Process

hanges due to evo
2 Al Zi | 3G
hanges due to bugs
* Changes due to
* These changes are reflect
source, data, docur

Other Software Process

4444k

i W A A 44

2

‘the process of Identifying and defining the it
controlling the change of t |
recording and reporting the

Other Software Process

Other Software Process

Rejected

Under Review

Developer Approved
Satisfied

Fig. 2 Configuration Management and development process 2 O

Other Software Process

(% &

N\ O

Other Software Process

Other Software Process

Other Software Process

Other Software Process

et et s ke gl ot o et et D ————— St .

ject requirements can change any time duri:

— s

Other Software Process

U
(L

1S 0)e
\©

G
gt
ot
)
it
o |
)
pe >
Loy
(D
O
(D
Ly
lom
®
l—
=
l—y
[p—
(D
=
~

o)
(D
92
AT
O
@
N
)
SR
=)
09

l=mp C

Uy W
:__. L
S
(D
1%

o
~ o)
= o
oo Yoo __;
Q) —-
-)
Y
=

l—
A >
NS
SO RN @
= @
o,
e L_"
O
= =

Other Software Process

72
7
<,
O
=
=
=5
<3,
o
:
=
=
90
o
Q
—
e
-

Other Software Process

that need to

roduct and items
he risk management

Other Software Process

72
7
<,
O
=
=
=5
<3,
o
:
=
=
90
o
Q
—
e
-

Other Software Process

Other Software Process

* Process Management Process

* Process management focuses on improving the process which

In turn improves the general quality and productivity for the
products produced using the process.

* Project management focuses on executing the current project
and ensuring that the objectives of the project are met.

* Time duration for project management process is typically the
duration of the project while process management has larger
duration as each project provides a data point for the process.

33

Other Software Process

» Changes to a process

‘J.--./‘--D

ot ot ot ottt ot ot

Other Software Process

Other Software Process

Other Software Process

* Process Management Process — Capability Maturity Model

* A maturity level is a well-defined evolutionary plateau
towards achieving a mature software process.

* CMM suggests that there are five levels of well-defined
maturity levels for a software process.

* These are initial (level 1), repeatable, defined, managed, and
optimizing (level 5).

 When a process improves it moves from one level to next until
it reaches level 5.

57

Other Software Process

* Process Management Froce

et et

Other Software Process

Continuously
‘ Optimizing

Improving

Process L(S)
Predictable Managed)
Process (4) ,

Standard,

Consistent Defined ‘
Process S)
Disciplined Repe;table
Process - @

 Initial ‘
S om

Fig. 3 Capability Maturity Model 3 9

Other Software Process

Other Software Process

Other Software Process

Other Software Process

Other Software Process

Other Software Process

Other Software Process

Other Software Process

VaY el @
LECSS

—
D)
N,
1)

)

]
)
<b)

—}

i ®)
<b)
oY)
qv)
P

0}

—
q0)

<b)

Other Software Process

ntify the areas
the quality or

Other Software Process

References

SHAAVATAYA S JF(jlectmanagementqgualific

7

.r.ruulrorlru control/

* https://www.Javatpoint.com /soft
) 'u& S: [/Www.geekstorgeeks.org y-model-

https://blog.proofhub.com/what-are-key-project-activities-in-project-management-bf5c939e8c67
https://www.projectmanagementqualification.com/blog/2019/10/21/project-monitoring-control/
https://www.javatpoint.com/software-engineering-tutorial
https://www.geeksforgeeks.org/software-engineering-capability-maturity-model-cmm/

Module 1 Introduction to Software
Engineering Basics - Part 1

Mr. Swapnil S Sontakke (Asst. Prof.)
Department of Computer Science and Engineering,
Walchand College of Engineering, Sangli

=
=
Q)
-
=
=)
-

Software Crisis

1S1S

Software Cr

't

1S1S

What is Software cr

What is Software crisis?

* Coined by NATO Software Engineering Conference, 1968 at
Garmisch, Germany

* The term is used in Computing Science for the difficulty in
writing useful and efficient computer programs in the
required time.

* Reason - rapid increases in computer power and the
complexity of the problems that could now be tackled

isis?

What is Software cr

iSis?

o
)
<
.
(S
=
=
=
)
D
—
e
=
Q
)
)
(S
)
)
S
=

=
Q
i=
=
Q
g
<
=
e

=
Q
i=
=
Q
g
<
=
e

=
3
=
=)
-
=
~
e
=)
-
=¥
<
=
e

11

The Problem Doma

than

ctive

11

The Problem Doma

=
3
=
=)
-
=
~
e
=)
-
=¥
<
=
e

The Problem Domain

The Problem Domain

The Problem Domain

Sr. No. Student Software Industrial Strength Software
Focus on testing is less, even 5% | High focus on testing, about 30-50%
7 | efforts on testing may be too high | efforts may be spent on testing
Standards @ and development | Standards and development
8 | processes/phases are not followed | processes/phases are strictly followed
to make it high quality
No requirement of backup, | High requirement of backup, recovery,
9 recovery, fault tolerance, | fault tolerance, portability, etc.

portability, etc.

7

The Problem Domain

L

solid Works,

/wgf B, HEC-HMS,
K, | ""*" t Visual Studio, etc.

i

2

)

11

The Problem Doma

ds of lines

n-month (

i.e. per

onth or KLOC per

11

The Problem Doma

5 million

11

The Problem Doma

<)
r
S
o
=
(qv)
<
o

11

The Problem Doma

b
—
Q¥
-~
o)
©
5]

The Problem Domain

The Problem Domain

11

The Problem Doma

11

The Problem Doma

11

The Problem Doma

©
-
qv)
S
O
S
~
P
)
-
)

ve

alled as adapt

11

The Problem Doma

'ware improves,

<)
o
®)
o
©
-
qY)
-
oY0)
 p—y
n
<)
©
-
-

the rework.

11

The Problem Doma

Challenges

ineering

The Software Eng

The Software Engineering Challenges

e Basic Problem

» Systematic Approach: Methodologies used for development
of software are repeatable.

Similar
Software

Methodologies
with Systematic
approach

Fig. 1 Systematic Approach

31

The Software Engineering Challenges

The Software Engineering Challenges

e Basic Problem

satisfies

Fig. 2 Basic
Problem

33

The Software Engineering Challenges

ing Challenges

o
<>
<
=
=)
-
el
<
o
s
=
Q
g
<
=
e

must be

The Software Engineering Challenges

e Scale

st
c
[0}]
£
(1]
o
«
C
(V]
=
st
O
D
(o]
| =
o

Formal

informal

Smali
Projects

informal

Development Methods

Large
Complex
Projects

Fig. 2 The Problem of
Scale

57

7¢)
<9
ey
=
<)
py
p—
(S
-
-

ing

The Software Engineer

ing Challenges

o
<>
<
=
=)
-
el
<
o
s
=
Q
g
<
=
e

7¢)
<9
ey
=
<)
py
p—
(S
-
-

ing

The Software Engineer

0]
(b
o))
=
(b
—
—
q°)
-
-

ing

The Software Engineer

The Software Engineering Challenges

* Quality (Q)

Software Quality

Functionaity [| Retiabitity || Usabiliy Portabilty

Fig. 4 Software quality attributes

42

7¢)
<9
ey
=
<)
py
p—
(S
-
-

ing

The Software Engineer

The Software Engineering Challenges

The Software Engineering Challenges

* Consistency and Repeatability
* A company may deliver high quality and high productivity
software once.

* Key challenge - repeating success for all projects and
consistency in quality and productivity

* Goal of Software Engineering - system after system can be
produced with high quality and high productivity

* This means - methods that are being used should be
repeatable across projects leading to consistency in quality of
software

45

The Software Engineering Challenges

* Consistency and Repeatability

* Consistency allows organization to predict the output of
project with accuracy.

* Consistency can be achieved by using methodologies in
consistent manner.

* Frameworks like ISO9001 and Capability Maturity Model
(CMM) encourage organizations to standardize
methodologies, use them consistently and improve them
based on experience.

46

ing Challenges

o
<>
<
=
=)
-
el
<
o
s
=
Q
g
<
=
e

Need of

Software Engineering
Approach

Approach

ineering

Need of Software Eng

Need of Software Engineering Approach

* We now understand the problem domain and the factors
that drive the software engineering.

* Objective - To develop a software with high quality and
productivity consistently for large scale problems under
dynamics of changes.

* Q&P is governed by three main forces: People, Processes and
Technology

* Called as the ‘Tron Triangle’

50

Need of Software Engineering Approach

Technology Qu a]ity

&
Productivity

51

Fig. 5 The Iron Triangle

=
S
S
=
=
=¥
=¥
<
=Ty
=

1mneer

Need of Software Eng

ftware

oping so

Need of Software Engineering Approach

Fig. 6b StrikeFortressBox

Need of Software Engineering Approach

* Premise: The software process determines the quality of the
product and productivity.

* So, to tackle the problem domain and software engineering
challenges, focus must be on software process.

* Other disciplines focus on the product while SE focuses on
process for developing the product.

* Two aspects: Phased development process and Managing
the process

54

=
S
S
=
=
=¥
=¥
<
=Ty
=

1mneer

Need of Software Eng

or solving

ent analysis,

Need of Software Engineering Approach

Approach

oY1)
=
Rt
b
<P
=
ot

Need of Software Eng

Approach

oY1)
=
Rt
b
<P
=
ot

Need of Software Eng

=
S
S
=
=
=¥
=¥
<
=Ty
=

1mneer

Need of Software Eng

testing and

Need of Software Engineering Approach

* Managing the Process

* Project management handles the issues relating to managing
the development process of a project.

* [t revolves around a project plan.

* Plan forms a baseline that is used for monitoring and
controlling the development process

* Includes how to allocate resources, scheduling different
activities, how to divide work within a phase, etc.

61

Need of Software Engineering Approach

* Managing the Process

* Product metrics and process metrics are used for the software
development

* They quantify the characteristics of product and process resp.

* Product metrics - size, complexity, performance, design
features, etc.

* Process metrics - productivity, cost, and resource
requirements, effect of development tools and techniques, etc.

* These are important for managing a software development

62

0]
f
O
=
O
=
&
Q
a <

https://en.wikipedia.org/wiki/Software_crisis
https://www.ukessays.com/essays/information-technology/symptoms-and-primary-causes-of-software-crisis-information-technology-essay.php
https://www.geeksforgeeks.org/software-engineering-software-crisis/
https://en.wikipedia.org/wiki/Spaghetti_code

Module 2 Software Quality and
Project Planning - Part 2

Mr. Swapnil S Sontakke (Asst. Prof.)
Department of Computer Science and Engineering,
Walchand College of Engineering, Sangli

=
=
Q)
-
=
=)
&)

Introduction

management,
risk

Software Project Management and its Need

* [t is an integral part of software development.

* To achieve the goal of meeting the cost, quality and schedule
objectives project management is important.

* To achieve this goal, resources have to be allocated properly,
each activity has to be monitored and if necessary, corrective
actions needs to be taken.

* [t also focuses on planning a project, estimating resource
and schedule and monitoring and controlling the project.

Software Project Management and its Need

Software Project Management and its Need

Schedule

Fig. 1 Project Management Goals

Project Manager

Responsibiliti

1€S

Project Manager

—

(E5)]
qv)
a)
—
- SR
1) 5
ey S}
~ q)
Ly
oh\\'e)
1) C
| - P
~n o
3 e
ru. D ¢ L)
= 0s)
e ..||W
. py qu)
e
L) F,. SESY
sadcs 5
qo) D)
R s
| <!
. § “(.“ N
—
S

1)

qv]

Project Manager - Responsibilities

ies

t

>

Project Management Act

ies

t

>

Project Management Act

Project Management Activities

Project Management Activities

Project Management Activities

ies

t

>

Project Management Act

Project Management Activities

Project Management Activities

Project Management Activities

ies

t

>

Project Management Act

Project Management Activities

oduct of

ies

t

>

Project Management Act

d with

n (Rayleigh
require

ies

t

>

Project Management Act

Project Management Activities

®

Juvwgsg

1 " 1 A Q T I '
» [t divides the s

Project Management Activities

Project Management Activities

Project Management Activities

* Project planning — Resource Management
* To develop a software product many resources are involved.

* These may include human resource, productive tools and
software libraries.

* They may be in limited quantity and their shortage may
hamper the development process and project may lag behind
the schedule.

 Allocating extra resources may increase the development cost,
SO it is necessary to estimate and mange the resources
correctly.

26

Project Management Activities

Project Management Activities

* Project planning — Risk Management

* Risk management involves all activities pertaining to
identification, analyzing and making provision for predictable
and non-predictable risks in the project.

* [t may include the following:
* Experienced staff leaving project and new staff coming in
* Change in organizational management
* Requirement change or misinterpreting requirement

28

ies

t

>

Project Management Act

Project Management Activities

* Project planning - Ris
* Following activities ar

PDI'OCCSS.

Project Management Activities

Project Management Tools

References

nttps:/ / www.ge

-

https://www.tutorialspoint.com/software_engineering/software_project_management.htm
https://www.javatpoint.com/software-project-management
https://www.geeksforgeeks.org/software-engineering-cocomo-model/

Module 3 Software Development
Phases - Part 2

Mr. Swapnil S Sontakke (Asst. Prof.)
Department of Computer Science and Engineering,
Walchand College of Engineering, Sangli

=
=
Q)
-
=
=)
-

Design Principles

Design Principles

* The design process often has two level

Design Principles

Design Principles

14*1___ -

limitations
and social

Tv

Design Principles

Design Principles

Design Principles

0 solve large a

~

* The goal of software design is to divide the problem into
| ' smaller pieces so that piece can be

Design Principles

vvvvvv

A % A A4AAR

—_—— e e e o e
4

which may not have existed

fAAAVv Al A1l

Design Principles

7¢)
-
=
)
I=
Rt
=¥
=
o
2
<3
-

Design Principles

* Abstraction
* Abstraction is used in all engineering disciplines.

* [t is a tool that permits a designer to consider a component at
an abstract level without worrying about the details of the
Implementation of the component.

» Every component provides a service to its environment.

* An abstraction of a component describes the external
behaviour of that component without bothering with the
internal details that produce the behaviour.

13

Design Principles

p—

u py

= L

. fd

| . - p—
— Jru_ r.: b} rw.q

- = 0 @ = <=

- S5
= (0 SNy .
uJJ wfr_ ,.Ub.ly N UD

n [| 20 : g
o r S O b—
o O

g = D= 1

™ =LY S .. == :

m NJH ..Irw_ .r‘# a.fvﬁ_ U
Vo) > > ®

- ,

ol

(00

\ Y (Y
[S

el

1d

[

U

7¢)
-
=
)
I=
Rt
=¥
=
o
2
<3
-

Design Principles

e Abstraction — Functional Abstraction
* [n this a module is specified by the function it performs.

* E.g. a module to sort an array can be shown by the
specification of sorting, a module to compute the log of a
value can be represented by the function log, etc.

* [t is a basis of partitioning in function-oriented design i.e.
when the problem is being partitioned, the overall
transformation function for the system is partitioned into
smaller functions that comprise the whole system.

7

Design Principles

Design Principles

Design Principles

* For modularity to work well in software system

Design Principles

Design Principles

the system,
omponents and

Design Principles

Design Principles

to implement more

Design Principles

Coding Standards

Coding Standards

* Introduction

> _p_mg_r“;l MMErs SDE_'_F_I.C,‘ e

e

more time on reading

———

B e

Coding Standards

respect to Java programming

B e e

Coding Standards

%)
.=
N
<
.=
=
T
e
&
en
=
=
S
S

%)
.=
N
<
.=
=
T
e
&
en
=
=
S
S

%)
.=
N
<
.=
=
T
e
&
en
=
=
S
S

Coding Standards

* Coding Standards - Indentation
* Proper indentation should be used as it makes the code
readable. Some of the spacing conventions are:
» Each nested block should be properly indented and spaced.

* Proper Indentation should be there at the beginning and at the
end of each block in the program.

» All braces should start from a new line and the code following
the end of braces also start from a new line.

* There must be a space after giving a comma between two
function arguments.

33

Coding Standards

Coding Standards

mport java.util.Scanner;
3“1.“: G229 4 ||d

public static void main(String[] args)
{

| T,]‘ L
nput from standard input - keyboard
Scanner reader = new Scanner(System.in);
system.out.print("Enter a number: ");

nt number = reader.nextint();

// printin() prints the tollowing i ne outy
system.out.printin("You entered: " + number);
}
}

mport java.util.Scanner;
nublic class HelloWorld

public static void main(String(] args)

{

// inpu . indard input - keyboard
Scanner reader = new Scanner(System.in);
System.out.print("Enter a number:);

ic +tho
{16

int number = reader.nextint(); |

System.out.printin("You entered: " + number);i

35

Testing
Fundamentals

=z
3]
e
=
<
=
3]
g=
=
=
P
=Ty
=
=
o
=

Testing Fundamentals

* [ntroduction

* Software testing Is a process, to evaluate the functionality of a
software application with an intent to find whether the
developed software met the specified requirements or not and
to identify the defects to ensure that the product is defect-free in
order to produce the quality product.

* Testing performs a critical role for ensuring the software
quality:.
» We discuss testing fundamentals here.

33

Testing Fundamentals

r'y'Nr ey ple r[~"C T - N
rror aiso refers to the
,,
G

Testing Fundamentals

Testing Fundamentals

=z
3]
e
=
<
=
3]
g=
=
=
P
=Ty
=
=
o
=

Testing Fundamentals

determine whether a system under test s

OF WOI'KS correctly.

=z
3]
e
=
<
=
3]
g=
=
=
P
=Ty
=
=
o
=

=z
3]
e
=
<
=
3]
g=
=
=
P
=Ty
=
=
o
=

Testing Fundamentals

Testing Fundamentals

Testing Fundamentals

* Testing Process — Levels of Testing

» Testing is usually relied upon to detect the faults from earlier
stages, in addition to the faults introduced during coding
itself.

* So, to test the different aspects of the system, different levels
of testing are used.

* These are unit, integration, system and acceptance testing.

* Figure 2 shows the relation of the faults introduced in
different phases and different levels of testing.

48

Testing Fundamentals

Client Needs

|

Requirements

Fig. 2 Levels of Testing 49

Testing Fundamentals

Testing Fundamentals

Testing Fundamentals

0a -
Vi < Rl
7s) | S P S5Y
Sy Y S iy
) V) }
QL &Y = ,._-V.J
W g ~
o) = .)
N -] DY p— VIJ
— gy]
o) qo}) L 1)
Nlb_ F.I_VJ.) m ~
- — '3 ')
— VA,WL_ - »Iulf
DL_ —) .UH.J @)

Testing Fundamentals

P _ > ®
 p— WM/
1Tr; “., IJ
)
b}]
[1
$
2

=z
3]
e
=
<
=
3]
g=
=
=
P
=Ty
=
=
o
=

as well as

Testing Fundamentals

* Testing Process — Test Plan

* [t Is a general document for entire project that defines the
scope, approdch to be taken and the schedule of the testing and
Identifies the test items for the entire testing process and the
personnel responsible for the different testing activities.

* Testing commences with test plan and terminates with
acceptance testing.

* Test plan can be defined before testing commences and can be
done in parallel with design and coding activities.

55

Testing Fundamentals

Testing Fundamentals

References

https://www.geeksforgeeks.org/coding-standards-and-guidelines/
https://www.softwaretestingmaterial.com/software-testing/

E__:'.'\;_ - pPTIET L
= - L
L - 5
L j— ¥
| 4 |
] S |
1L 3 5 Y
" [| h] | |
| [| il ¥ Tk i
H N —— 1 [
'R J o,
W R Pla,
‘:.\: .:.- J .-:. .'\-- b
=] X
Fe H.\..__.. . r
.......... T r
I.._."'h,_. -
Ty " drg h .-:'.':.
|} i
v e —
L

Introduction and Database Modeling using ER

Mr. Swapnil S Sontakke (Asst. Prof.)

Department of Computer Science and Engineering,

Walchand College of Engineering, Sangli

» Introduction to Database Systems

» Advantages and Applications of Database Systems
Data Models

Data Abstraction

Database Schema and Instance

Database Languages

Database System Architecture

Database Users and Administrator

» Entity-Relationship Model

VV YV VYV

~ What is Data?
“facts and statistics collected together for reference or analysis.”
Or

“the quantities, characters, or symbols on which operations are performed by a
computer, which may be stored and transmitted in the form of electrical signals
and recorded on magnetic, optical, or mechanical recording media.”

- Oxford Dictionary

> What is Data?

* Data is a collection of facts, such as numbers, words, measurements,

observations or just descriptions of things which in turn may be qualitative
or quantitative.

* Data can be in many formats such as numbers, text, images, audio, video,
etc.

» Data is used to produce the information.

Introduction to Datab

> What is Database?

* Database is a collection of related data stored electronically in a organized
manner and used to insert, retrieve, update and delete the data efficiently.

* Data in the database is organized in the form of tables, views, schemas,
reports, etc.

- E.g. College database will have data related to students, faculty,
departments, labs, etc. which are interrelated to each other.

Intro

> What is Database Management System (DBMS)?

* DBMS is an application (software) which is used to manage the databases.

* The primary goal of a DBMS is to provide a way to store, retrieve, update
and delete database information conveniently and efficiently.

* E.g. MySQL, Oracle, MariaDB, PostgreSQL, Microsoft SQL Server, Amazon
Aurora, etc.

» Initially file based systems were used to store and retrieve the data.

» In this simple files were stored on the electronic devices such as computers.
» There are many issues with this system which are as follows:
» Data Redundancy

- Same data is duplicated in many places (files).

* E.g. Student Email ID may be present at many sections.

» This may lead higher storage and access cost.

y
\

ng sSystems

(=)

» Data Inconsistency
» Multiple copies of same data does not match with each other.

* E.g. If Phone number is different in contact information section and
profile section or accounts section, it will be inconsistent.

» Difficulty in Accessing Data

* If a set of programs for performing a particular operation is not available
then it becomes difficult to access or retrieve those data.

* E.g. Getting a list of students who live in particular district.
* No convenient or efficient way to access the data

» Data Isolation

* Data are stored in multiple files and files may be in different formats.
- Writing new programs to retrieve the appropriate data is difficult.
» Integrity Problems
* There can be many consistency constraints that data must satisfy.
» E.g. Account balance should not fall below Rs. 1000, etc.

- Whenever new constraints are to be added, changes in programs is
necessary which is very difficult task.

» Atomicity Problems

A computer system is subject to failure.

In case of failure occurs, it is necessary that the data must be restored to

the consistent state that existed prior to the failure.

This means the operations should be atomic i.e. it must happen in its

entirety or not at all.

E.g. Transferring money from one account to another

Achieving atomicity is difficult in file processing systems.

10

(=)

)cessing Systems

» Concurrent Access Anomalies

* For the overall performance and faster response, many systems allow
multiple users to access and update the database concurrently.

* Concurrent updates may lead to inconsistency.

* E.g. If an account with 10, 000 is debited by two clerks concurrently
with X500 and X800 resp. If two programs run concurrently, they may
both read the value X10, 000 and write back 9500 and X9200. But the

correct value is X8700.
* This should not happen for any of the programs.

y
\

ng sSystems

(=)

» Security Problems
* Not every user should be given access to all the data.

* E.g. Accounts persons should not have access to personal information,
Students should have access to only student portal to see their results and
should not be able to change the data, etc.

* Itis difficult to provide security in file processing systems.
» Backup and Recovery

* File processing systems does not incorporate any backup and recovery
mechanism if the data is lost or file is corrupted.

12

Advantages of Database Systems

» All the issues with the file processing systems are tackled by the Database
systems or DBMS.

» They follow ACID properties i.e. Atomicity, Concurrency, Integrity and

Durabi]

1ty.
» Control

» Control

data redundancy
concurrent access anomalies

» Provide security, backup and recovery.

» They also support multiple views for different users such as admin, user,
manager, etc.

» Easy to maintain

13

Applications of Data

» Database systems have very vast range of applications in every area.
» Some of the representative applications are mentioned on the next slides.

14

[N

Applications of Database !

> Enterprise Information
» Sales: For customer, product, and purchase information.

* Accounting: For payments, receipts, account balances, assets, and other
accounting information.

- Human resources: For information about employees, salaries, payroll
taxes, and benefits, and for generation of paychecks.

» Manufacturing: For management of the supply chain and for tracking
production of items in factories, inventories of items in warehouses and
stores, and orders for items.

15

[N

Applications of Database !

» Banking and Finance

- Banking: For customer information, accounts, loans, and banking
transactions.

* Credit/Debit card transactions: For purchases on credit cards and
generation of monthly statements.

- Finance: For storing information about holdings, sales, and purchases of
financial instruments such as stocks and bonds; also for storing real-time
market data to enable online trading by customers and automated
trading by the firm.

16

Applice

» Universities: For student information, course registrations, and grades (in
addition to standard enterprise information such as human resources and
accounting).

» Airlines: For reservations and schedule information. Airlines were among
the first to use databases in a geographically distributed manner.

» Telecommunication: For keeping records of calls, texts, and data usage,
generating monthly bills, maintaining balances on prepaid calling cards, and
storing information about the communication networks.

17

> Web-based services

* Social-media: For keeping records of users, connections between users

(such as friend/follows information), posts made by users, rating/like
information about posts, etc.

* Online retailers: For keeping records of sales data and orders as for any
retailer, but also for tracking a user’s product views, search terms, etc.,

* Online advertisements: For keeping records of click history to enable
targeted advertisements, product suggestions, news articles, etc.

18

Data Model

» Underlying structure of a database is known as data model.

» It is a collection of conceptual tools for describing data, data relationships,
data semantics, and consistency constraints.

» The data models can be classified into four categories:
 Relational Model
- Entity-Relationship (E-R) Model
* Semi-structured Data Model
* Object-Based Data Model

19

ray N o

» Relational Model

* It uses a collection of tables to represent both data and relationship
between those data.

Each table consists of many columns and each column has unique name.

Tables are also known as relations.
* This model is record-based model with fixed format.
* [tis one of the widely used model.

20

Data Model

» Entity-Relationship (E-R) Model
* [t graphically represents the objects and their relationships.

[t uses a collection of basic objects called as entities and relationships
among these objects.

* An entity is a thing or object in the real world that distinguishable from
other objects.

* The E-R model is widely used in the database design.

Data Models

» Semi-structured Model

[t permits the specification of data where individual data items of the
same type may have different set of attributes.

* It is different from previous data models.

» XML and JSON are widely used semi-structured models.
> Object-Based Data Model

* [tis a object-oriented data model.

* It can be seen extending relational model with object oriented concepts
such as encapsulation, object identity, methods, etc.

22

-
g

Data Abstraction

» For the system to be usable, it must retrieve data efficiently.

» To achieve the efficiency, the database developers use complex data
structures to represent data in the database.

» As many database-system users are not trained, complexity needs to be
hidden from them.

» Developers achieve this using several levels of data abstraction.

» “Data abstraction is the process of hiding the background implementation
details and providing only essential information to the users (outside world).”

» Data abstraction simplifies the users’ interactions with the system.

23

Data Abstraction

» There are three levels of abstraction in the database system: Physical Level,
Logical Level and View Level

» Physical Level
* Lowest level of abstraction
* Describes how the data are actually stored
* Describes the complex low-level data structures in detail

- E.g. data stored can be described as block of storage (bytes, gigabytes),
type of files, indexes in memory

* Users: Programmers/Developers

24

» Logical Level

Next higher level of abstraction

Describes what data are stored in the database and what relationships
exists among those data

Describes the entire database in terms of small number of relatively
simple structures

It may still involve complex physical-level structures, but complexity is
kept hidden from its users

25

» Logical Level
* i.e. It hides the physical level and gives the logical view of the database.

 This is called as Physical Data Independence.
* Users: Database Administrator

* E.g.

Department Budget
Civil 500000
Electrical 450000
Electronics 450000
Mechanical 500000

26

» View Level

Highest level of abstraction
Describes only part of the entire database

It may still involve complexity, but complexity is kept hidden from its
users

Users don’t need access to entire database; they need only part of it.

The view level abstraction simplifies the interaction of end users with the
system by providing many views of the same database.

27

Data Abstra

» View Level
 Users: authentic end users
* E.g.
= Checking only bank balance
= Checking last 5 transactions
= Deriving age of using date of birth
= Employee can see only his/her salary and not the manager’s salary, etc.

* Figure shows relationship among three levels of abstraction.

28

Fig. 1 Three levels of abstraction

e]_[ml

» “The overall design of a database is called as the schema.”
» It defines a structure in formal language supported by a DBMS.
» It shows the logical view of the entire database.
» It shows the organization of data and relationship among them.
» Various schemas are defined at various abstraction level.
> Physical Schema
* Defines database design at physical level
* Defines how data is stored on disk storage in terms of files and indices

30

» Logical Schema

* Defines all the logical constraints that need to be applied on the data
stored

* [t defines tables, views and integrity constraints.
» Subschemas
* A database may also have several schemas at the view level.
* These are called as “subschemas”.
* They describe various views of the database.

Database Schema

CREATE TABLE (
int(11) NOT NULL,
varchar(70) NOT NULL,
varchar(50) NOT NULL,
varchar(50) NOT NULL,

varchar(50) DEFAULT NULL,
varchar(50) NOT NULL,
PRIMARY KEY (|),

)

Fig. 1 Example of Database Schema in SQL

» Database is not a static, it is dynamic.

» This means it changes over time as new information is inserted, deleted and
updated.

» “The collection of information stored in the database at a particular moment
Is called as an instance of the database.”

33

» A database system provides two types of languages:

 Data Definition Language (DDL)
* Data Manipulation Language (DML)

» In practice, DDL and DML are not separate languages rather they are part of
single database languages such as SQL.

» SQL is employed in almost all relational databases.

34

» Data Definition Language (DDL)
* DDL is a language that specifies a database schema by a set of definitions.

» DDL also specifies additional properties of data.

* The implementation details provided by DDL are in general hidden from
the end users. E.g.

create table department
(dept name char (20),
building char (15),
budget numeric (12,2));

35

» Data Manipulation Language (DML)

DML is a language that enables users to manipulate or access the data as
organized by the appropriate data model.

* The types of access are:
= Insertion of new information into the database
= Retrieval of information stored in the database
= Modification of information stored in the database
= Deletion of information from the database

36

» Data Manipulation Language (DML)

* There are two types of DML: Procedural DML and Non-procedural
(Declarative) DML

* Procedural DMLs require a user to specify what data are needed and how
to get those data.

* Declarative DMLs require a user to specify what data are needed without
specifying how to get those data.

37

» Data Manipulation Language (DML)

* A query is a statement requesting the retrieval of information.

* The portion of a DML that involves information retrieval is called a query
language.

* SQL is widely used query language.

38

» The database system is divided into different modules having their set of
responsibilities.

» These modules are
* The storage manager
* The query processor components and

* The transaction management component

39

Naive Users

Application
Interfaces

Application
Programmer

Application
Programs

Sophisticated Database
Users Administrator

Administration
Tools

Compiler & Linker

DML Queries DDL. Interpreters

—

Application Program |
Object Code

!

DML Compiler &
Organizer

Query Evaluation
Engine

Buffer
Manager

File
Manager

Authorization &
Integrity Manager

Transaction
Manager

Indices

Data Dictionary Statistical Data

Figure: System Architecture

System Architecture

» The Storage Manager

» It provides the interface between the low-level data stored in the
database and the application programs and queries submitted to the
system.

* It is responsible for interaction with the file manager.

* [t translates DML statements into low-level file-system commands, hence
is responsible for storing, retrieving, updating and deleting the data in the
database.

» The Storage Manager

* The components of storage manager are
= Authorization and integrity manager
= Transaction manager
* File manager

= Buffer manager

- The data structures implemented by the storage manager are data files,
data dictionary and indices.

42

System Architecture

» The Query Processor
* It helps the database system to simplify and facilitate access to data.

- It allows database users to achieve a good performance while working at
the view level without focusing on physical level details of
implementations.

* The components of query processor are

= DDL Interpreter
= DML Compiler
= Query Evaluation Engine

43

System Architecture

» The Transaction Manager

* A transaction is a collection of operations that performs a single logical
function in a database application.

* Each transaction is a unit of both atomicity and consistency.

- It allows application developers to treat a sequence of database accesses
as if they were a single unit that either happens in its entirety or not at all.

44

NG

Database System Archi

» While database engines were traditionally centralized computer systems,
today parallel and distributed databases which run faster and at different
locations are widely used.

» Architectures of database applications that use databases can be two tier or
three tier.

» In two-tier architecture, the application resides at the client machine, and
invokes database system functionality (directly) at the server machine
through query language statements.

»~ E.g. Desktop applications, games, music, etc.

45

Database System Archit

» In three-tier architecture, the client machine acts as front end and there is
no any database calls.

» User uses application clients such as web browsers, mobile applications, etc.

» The front end communicates with the application server (at another
location).

» The application server then communicates with a database system to access
data.

» The business logic of the application, which says what actions to carry out
under what conditions, is embedded in the application server.

46

» E.g. Web-based applications, website, mobile applications, etc.

47

client

application server

database system

N >4

~ - - - - -

database system

(a) Two-tier architecture (b) Three-tier architecture

Fig. 3 Client-server 2-tier & 3-tier Architecture

» People who work with a database can be categorized as database users or
database administrators.

» Database Users and User Interface

* There are different types of database users, differentiated based on how
they interact with the system.

* For each of the user types different user interfaces (UI) have been
designed.

* These users are Naive users, Application Programmers and Sophisticated
users.

49

» Naive users

* Unsophisticated users who interact with the system by using predefined
user interfaces, such as web or mobile applications

* E.g. end users using any mobile or desktop applications or website users
» Application Programmers
» Computer professionals who write application programs.

» Application programmers can choose from many tools to develop user
interfaces.

* E.g. Programmers/Developers

50

» Sophisticated users
 Sophisticated users interact with the system without writing programs.

* They form their requests either using a database query language or by
using tools such as data analysis software.

 E.g. Analysts who submit queries to explore data in the database

» Database Administrator

* A person who has central control over the system (both data and programs
to access those data) is called a database administrator (DBA).

* The functions of a DBA include:
= Schema definition
= Storage structure and access-method definition
= Schema and physical-organization modification
= Granting of authorization for data access
= Routine maintenance such as backup, disk space requirements, etc.

52

» The Entity-Relationship (E-R) Model is developed to design the structure

of a database with the help of a diagram known as The Entity-Relationship
(E-R) diagram.
» ER diagram expresses the overall logical structure of a database graphically.

» Here we discuss the main components of E-R model.
* Entity Set
* Relationship Set

53

> Entity Set

* An entity is a “thing” or “object” in the real word that is distinguishable
from all other objects.

* E.g. every student in a college is an entity, course in a college, a flight
reservation, bank management system, etc.

* An entity has a set of properties, and the values for some set of properties
must uniquely identify an entity.

* E.g. a student may have examSeatNo whose value uniquely identifies that
person.

54

» Entity Set

* An entity set is a set of entities of same type that share the same properties,
or attributes.

* E.g. student can be an entity set that represents all students in the college,
teacher can be an entity set that represents all teachers in the college, etc.

* An entity set do not need to be disjoint.

- E.g. person entity may represent a student entity, teacher entity, both or
neither.

99

» Weak Entity Set

* A weak entity set is an entity set which cannot be identified by its own
attributes and whose existence is dependent on another entity set.

* The supporting entity set is called identifying entity set of weak entity
set.

* An entity set that is not weak entity set is called as strong entity set.

56

> Weak Entity Set
E.g.

Room is a weak entity set which cannot exist without a building

Bank account cannot be uniquely identified without associating it to a

particular bank

Module/Chapter is a weak entity set which needs book, paper
Insurance Policy requires an employee

Library is a strong entity set as it can exist without college/university

S/

» Attributes
* An entity is represented by a set of attributes.

Attributes are descriptive properties possessed by each member of an
entity set.

The designation of an attribute for an entity set expresses that the
database stores similar information concerning each entity in the entity
set.

* However, each entity may have its own value for each attribute.

E.g. student can have examSeatNo, name, dept, class, etc. attributes

58

» Value

* Each entity has a value for each of its attributes.

* E.g. student entity can have value 2050BTECS00001 for examSeatNo,
value Ram for name, value Al & ML for dept, and value First Year for class.

> Primary Key

59

» Types of Attributes
* An attribute in E-R model can be characterized by following types:

= Simple and Composite
= Single-valued and Multivalued
" Derived

60

» Types of Attributes
* Simple and Composite

= An attribute which cannot be further subdivided into component attributes is
called as simple attribute.

= E.g. examSeatNo, employeelD, ISBN, accountNo, etc.

= An attribute which can be further subdivided into component attributes is
called as composite attribute.

= E.g. address (houseNo, streetNo, city, state, country), name(first, middle,
last), phoneNo(STDCode, Number), etc.

» Types of Attributes
* Single-valued and Multivalued

= An attribute which takes up only single value for a particular entity is called as
single-valued attribute.

= E.g. examSeatNo, age, height, weight, etc.

= An attribute which takes up two or more values for a particular entity is called
as multivalued instance.

= E.g. mobileNo, emaillD, address, course, hobby, etc.

62

» Types of Attributes
* Derived

= An attribute whose value can be derived from other related attributes or
entities is called as derived attribute.

= E.g. totalMarks, averageMarks, age, BM], etc.

63

> Relationship Set

* An association among several entities is called as relationship.
* E.g. Mr. R. Sharma is a coach of Mr. Virat Kohli
* Relationship set is a set of relationships of the same type.

- E.g. we define relationship set coach to denote the association between
instructor and player.

64

Ramakant Achrekar

Mr. R. Sharma

P1 Mr. Sachin Tendulkar
P2 Mr. Virat Kohli

P3 Mr. A.B. C

P4 Mr. X. Y. Z.

65

» Degree of Relationship Set

* [tis number of entity sets participating in a relationship set.
* There are following degrees exist:

- Unary Relationship

= When there is only ONE entity set participating in a relation, the relationship
is called as unary relationship.

= For example, one Person is married to only one Person.
= The degree of unary relationship is 1.

66

» Degree of Relationship Set

- Binary Relationship

= When there TWO entity sets participating in a relation, the relationship is
called as binary relationship.

= For example, Student is enrolled in Course.
= The degree of binary relationship is 2.

67

» Degree of Relationship Set

* Ternary Relationship

= When there THREE entity sets participating in a relation, the relationship is
called as ternary relationship.

= For example, Student is working on a Project under the guidance of Guide.
= The degree of ternary relationship is 3.
* N-ary Relationship

= When there n entity sets participating in a relation, the relationship is called
as ternary relationship.

= The degree of n-ary relationship is n.

68

» Mapping Cardinality/Cardinality Ratios

* It expresses the number of entities to which another entity can be
associated via a relationship set.

* The number of times an entity of an entity set participates in a relationship
set is known as cardinality.

* For a binary relationship set R between entity sets A and B, the mapping
cardinality are as follows:

69

» Mapping Cardinality/Cardinality Ratios

* For a binary relationship set R between entity sets A and B, the mapping
cardinality are as follows:

°* One-to-One:

= An entity in A is associated with at most one entity in B, and an entity in B is
associated with at most one entity in A.

= The cardinality is one to one.

/0

» Mapping Cardinality/Cardinality Ratios

* One-to-Many:
= An entity in A is associated with any number (zero or more) of entities in B.
An entity in B, however, can be associated with at most one entity in A.
= The cardinality is one to many.
* Many-to-One:
= An entity in A is associated with any number (zero or more) of entities in B.
An entity in B, however, can be associated with at most one entity in A.

= The cardinality is many to one.

» Mapping Cardinality/Cardinality Ratios

* Many-to-Many:
= An entity in A is associated with any number (zero or more) of entities in B,

and an entity in B is associated with any number (zero or more) of entities in
A.

= The cardinality is many to many.

/2

» Participation Constraints

* Total Participation

= The participation of an entity set E in a relationship set R is said to be total if
every entity in E participates in at least one relationship in R.

- Partial Participation

= If only some entities in E participate in relationships in R, the participation
of entity set E in relationship R is said to be partial.

/3

Entity-Relationship Model

» E-R Diagrams - Basic Structure
* An E-R diagram consists of following components:
* Rectangles divided into two parts: Represent entity sets

examSeatNo
Name

Names of all the attributes Branch
of the entity set Class

Email-ID

/4

Entity-Relationship Model

» E-R Diagrams - Basic Structure

- Lines: link entity sets to relationship sets.

- Diamonds: Represent Relationship sets

Teacher

ID

Name
Designation
Email-ID
Mobile

Student

examSeatNo
Name
Branch
Class
Email-ID

79

Entity-Relationship Mode

» E-R Diagrams - Basic Structure

- Undivided rectangles: Represent the attributes of a relationship set.
- Dashed lines link attributes of a relationship set to the relationship set.

Teacher Student

ID ‘ Guide examSeatNo

Name
Designation
Email-1D Class

Mobile Email-ID

Name
Branch

/6

Entity-Relationship Model

» E-R Diagrams - Basic Structure

- Double lines indicate total participation of an entity in a relationship set.

* Double diamonds represent identifying relationship sets linked to weak
entity sets

buildin g \ ,_;;I_Efv':" Q room

buldingNo

name & ownerName
address W y 4 floorNo
owner

builder

/7

» E-R Diagrams - Basic Structure

> Double rectangle represent weak entity

- Primary key attribute is always underlined. It helps identify each of the
member in an entity uniquely.

/8

Entity-Relationship Model

» E-R Diagrams - Basic Structure
* One-to-One Relationship

teacher student

ID examSeatNo
name name

designation branch
email-ID class

mobile email-1D

Entity-Relationship Model

» E-R Diagrams - Basic Structure
* One-to-Many Relationship

student

ID

examSeatNo
name name

designation branch
email-ID class

mobile email-ID

Entity-Relationship Model

» E-R Diagrams - Basic Structure
* Many-to-One Relationship

teacher student

ID J examSeatNo
name name
designation branch
email-ID class

mobile email-ID

Entity-Relationship Model

» E-R Diagrams - Basic Structure
* Many-to-Many Relationship

teacher student

ID | examSeatNo
name name
designation branch
email-ID class

mobile email-1D

Entity-Relationship Model

» E-R Diagrams - Basic Structure
* Mapping Cardinality Limit (Another way)

teacher student

ID | examSeatNo

name name

designation branch
email-1D class
mobile email-ID

//\ department
(7()![7‘5('_(&?}# dept _name

building

™ l‘!l.’f\’t'.’

Y

inst_dept stud_dept
istructor R student
D - advisor ID
name name
\‘u‘l’f”'_l/ tol_cred

<‘ g rade

teaches

section

course time_slot

var S
by A (14

course id
title
credits

semesier time_slot id
yeqr | day

start_time

end time

course_id prereq_id sec class

classroom

building
room_number

l'llﬁu’l‘i!}l

» Abraham Silberschatz, Henry F. Korth and S. Sudarshan, “Database System Concepts”, Mc-Graw Hill,
7t Edition.

35

e P

" o a2
g
N - ¥
] -
15 . i
H UL L |
1L 3 Y
" [| h] | |
| [| il ¥ Tk i
& B e .]
W R Pla,
-:.\: .:- J .-:. .'\-- b
SL] X
Fe H.\..__.. . r
; i 14
y ."_._ i . -
e]
Ty " dra h .-:'.':.
. TOF i
a

Mr. Swapnil S Sontakke (Asst. Prof.)

Department of Computer Science and Engineering,

Walchand College of Engineering, Sangli

» Introduction to Relational Model

» Structure of Relational Database
» Keys
» Relational Algebra

e J

Introduction to Relati

» Proposed by Dr. E. F. Codd in 1970
» Received The Turing Award in 1981

» Relational model forms the basis for relational databases i.e. it represents
how data is stored in the relational databases.

» In relational model all data is represented in terms of tuples and grouped
into relations.

» A database organized in terms of relational model is relational database.

e J

Introduction to Relati

» After designing the conceptual model of Database using ER diagram, we
need to convert the it in the relational model which can be implemented
using any RDMBS languages like Oracle SQL, MySQL, etc.

» It is one of the primary data model used for commercial data processing
applications because of its simplicity.

Structure o

» A database organized in terms of relational model is relational database.
» Relations

A relational database consists of a collection of relations each having a
unique name.

* Relations are also known as tables.

» Data is stored in rows and columns.

_) tructur:

» Tuple
* Each row in the table is known as a tuple.
* [trepresents data related to an entity or object.
* It represents the relationship between the values.
» Attribute
» Each column in the table represents the attribute.
* Each column name must have unique attribute name.

elational Databases

exam_seat _no name Depariment mobile
2050BTECSO001 Nelgp Computer Science TT1T1111111
2050BTEENOO1 Shyam Electronics 22222222222
2050BTEELOO1 Ganesh Electrical 33333333333
2050BTECVO0O01 Ravi Civil AAA4A444444
2050BTEMEOQOQ] Mahesh Mechanical 55555555555

Table 1. Student relation (table)

of Relational Databases

» Domain

* For each column/attribute of table, there is a set of permitted values
called as domain of that attribute.

* E.g. For the attribute exam_seat_no, domain is set of all exam seat
numbers, for name, it is a set of all possible names.

* A domain is said to be atomic if elements of the domain are considered to
be indivisible units.

* E.g. phone_number: it can have multiple values and even its single value
can be sub divided (into country code, area code, and local number)

» Domain

* null value is a special values that signifies that the value is unknown or
does not exist.

* E.g. It may be possible that value for phone_number for student relation
may not exist or is unlisted.

» Database Schema

* Itis alogical design of a database.
 In general, it is physical level, logical level and view level.
» Database Instance
* [tis a snapshot of the data in the database at a given instant in time.

10

» Relation Schema

 Itis a programming language notion of type definition.
* It consists of a list of attributes and their corresponding domains.
* In general, it does not change with time.
> Relation Instance
- Itis a programming language notion of a value of a variable.
» It refers to a specific instance of a relation that contains a specific set of rows.
* They do not contain duplicate values.
* In general, it changes with time as the relation is updated.

Structure of Relational Databases

int(11) NOT NULL,
varchar(70) NOT NULL,
varchar(50) NOT NULL,
varchar(50) NOT NULL,

varchar(50) DEFAULT NULL,
varchar(50) NOT NULL,
PRIMARY KEY (),

)

Fig. 1. Sample Relation Schema

» Relation Instance

° E.g.

student (st_id, st_nm, st_email, st_dept, st_course)
teacher (tr_id, tr_nm, tr_email, tr_dept, tr_course)
teaches (tr_id, course_id, dept, sem, year)

13

» A relation consists of large number of tuples.

» Each tuple has a set of values for given set of attributes/columns.

» To uniquely identify every tuple, attribute values should be uniquely
specified.

» These attributes that are used to uniquely identify tuples in the relation are
called as keys.

» There are following types of keys: Superkey, candidate key, primary key and
foreign key

14

» Superkey

* A superkey is a set of one or more attributes that, taken collectively, allows
us to identify uniquely a tuple in a relation.

* E.g. In STUDENT (examSeatNo, stName, stMobile, stBranch) relation,

an attribute examSeatNo is a superkey as it is sufficient to identify one
student record (tuple) from another.

However, stName or stBranch cannot be a superkey as values for both
the attributes may be same.

{examSeatNo, stName} or {examSeatNo, stMobile}, {examSeatNo,
stBranch} are also superkeys for STUDENT relation

15

» Candidate key

* A candidate key is a minimal set of attributes which can uniquely identify a
tuple in a relation.

* In general, superkey may contain extraneous attributes like stName in
{examSeatNo, stName}

» If K'is a superkey, any of its superset is also a superkey.

* But, candidate key is a minimal superkeys for which no proper subset is a
superkey.

16

» Candidate key
* E.g. In STUDENT (examSeatNo, stName, stMobile, stBranch) relation.

Some Superkeys are: {examSeatNo}, {examSeatNo, stName}, {examSeatNo,
stMobile} and {examSeatNo, stBranch}.

{stName, stMobile} is also sufficient to uniquely identify the tuple in
STUDENT.

So, Candidate keys are: {examSeatNo} and {stName, stMobile}.

Remaining keys are only superkeys and not candidate kays as they contain
{examSeatNo} which alone is a candidate key.

17

» Candidate key

 E.g. In EMPLOYEE (employeelD, empName, empSalary, empPAN,
empAadharNo) relation.

So, Candidate keys are: {employeelD}, {empPAN} and {empAadharNo}.
All other combinations of attributes may form superkeys such as
{employeelD, empName}, {empName, empPAN}, etc.

18

» Points to remember

* A superkey is a superset of candidate keys, but vice versa is not true.

There can be one or more superkeys in a relation.

There can be one or more candidate keys in a relation.

Superkey and candidate key cannot be null.

Adding 0 or more attributes in a candidate key generates superkey.
Superkey and candidate can be simple or composite.

19

> Primary Key

* A primary key is a candidate key that is chosen by the database designer as
a principal means of identifying tuples in within a relation.

* There can be only one primary key for a relation (chosen out of many
candidate keys).

* The candidate key other than primary key is called as alternate key.
* E.g. In STUDENT relation, examSeatNo is a primary Kkey.

In EMPLYEE relation, employeelD is a primary key.

* Primary key cannot be null and duplicate.

20

» Foreign key

* A foreign-key constraint from attribute(s) A of relation r1 to the primary-
key B of relation r2 states that on any database instance, the value of A for
each tuple in r1 must also be the value of B for some tuple in rZ2.

» Attribute set A is called a foreign key from r1, referencing r2.

* The relation r1 is also called the referencing relation of the foreign-key
constraint, and r2 is called the referenced relation.

 In simple words, foreign keys are the column of one table which is used to
point to the primary key of another table.

examSeatNo
fullName
departmentiD
Class

emailAddress

depariment

deparimentName

estdYear

» Points to Remember

Primary key cannot be null and duplicate.

A foreign key can be null as well as may contain duplicate values.
Primary keys are also referred to as primary key constraints.
Primary key attributes are underlined.

A referential integrity constraint requires that the values appearing in
specified attributes of any tuple in the referencing relation also appear in

specified attributes of at least one tuple in the referenced relation.

23

> Query Language

* Itis a language in which a user requests information from the database.

* There are three types of query languages:
= Imperative
* Functional
= Declarative

24

» Imperative Query Language

In imperative query language, the user instructs the system to perform a
specific sequence of operations on the database to compute the desired
result.

It uses the state variables, which are updated in the course of the
computation.

Requires deep technical and language knowledge.
They are not user friendly and may prone to human error.
E.g. No pure imperative query languages, Gremlin and JavaAPI (for Neo4j)

25

» Functional Query Language

* In functional query language, the computation is expressed as the
evaluation of functions that may operate on data in the database or on the
results of other functions.

* The functions are side-effect free, and they do not update the program
state.

- E.g. Relational Algebra which forms the basis for SQL language

26

» Declarative Query Language

* In declarative query language, the user describes the desired information

without giving a specific sequence of steps or function calls for obtaining
that information.

* The desired information is typically described using some form of
mathematical logic.

* [tis the job of the database system to figure out how to obtain the desired
information.

* E.g. Tuple relational calculus, domain relational calculus and SQL

27

» Declarative Query Language

* SQL actually includes the elements of imperative, functional and
declarative approaches.

28

Relational /

» The relational algebra consists of a set of operations that take or two
relations as inputs and produce a new relation as their result.

» The operations can be either unary or binary.

» Unary operations are those which operate on only one relation to produce a
desired result.

» Select, project and rename operations are unary operations.

» Binary operations are those which operate on a pair relations to produce a
desired result.

» Union, Cartesian-Product and set difference are binary operations.

29

L.

Relational Algebra

> The Select operation

This is a unary operation used select tuples that satisfy the given
predicate.

It is denoted by lowercase Greek letter sigma (o).

The predicate appears as a subscript to o and the argument relation is in
the parenthesis after the o.

In general, comparisons are allowed using =, #, <, <, > and 2.

Several predicates can be combined into larger one using and(/\), or(V)
and not (—) operators.

30

» The Select operation

* E.g. 1. Select all the tuples of instructor relation where instructor is in
Physics department.

Gdept_name=“Physics" (II’IS tructor)

- E.g. 2. Select all the tuples of instructor relation where instructor has
salary greater than 90000

Gsalary>90000 (II’IStI"LlCtOI")

> The Select operation

* E.g. 3. Select all the tuples of instructor relation where instructor is in
Physics department and has salary greater than 90000.

Gdept_name=“Physics" A\ salary >90000 (1 nstructor)
* E.g. Select all the tuples of department relation where department name is
same as building name.

Gdept_name=building (dep artmen t)

32

Relational Algebra

ID name dept_name salary
Mechanical 90000
Electrical 80000

Physics /5000

Physics 150000
Civil 200000
Electronics 300000

Table 2. instructor relation

ora

Relational Alge

Physics /5000
Physics 150000

Table 2-1. Output of the E.g.1

34

Physics 150000
Civil 200000
Electronics 300000

Table 2-2. Output of the E.g.2

35

Physics 150000

Table 2-3. Output of the E.g.3

36

» The Project operation

This is a unary operation used return its argument relation with certain
attributes left out.

That is this operation shows the list of those attributes that we wish to
appear in the result.

It is denoted by uppercase Greek letter pi (II).

The predicate appears as a subscript to Il and the argument relation is in
the parenthesis after the II.

37

Relational Algebra

» The Project operation

* E.g. 1. (Refer Table 2) Return ID, name and salary from instructor relation.

l_[ID, name, salary (ll’lStl”LlCtOl”)

* A basic version of project operation I1; (E) allows only attributes names

to be present in the list (L) but generalised version allows expressions
involving attributes to appear in the list (L).

* E.g. To get monthly salary of instructor:

l_[ID, name, salary/12 (Il’lStl"LlCtOl")

38

Relational Algebra

ID name salary
%0000
80000
75000

150000
200000
300000

Table 2-4. Output of the E.g. 1 of Project Operation

P

ord

Relational Alge

» The Composition of Relational Operations
* Fact: The result of a relational operation is itself a relation.

* Because of this fact, these operations can be composed together into a
relational algebra expression.

* For e.g., To find the names of all instructors in the Physics department:

l_[name (Gdept_name=“Physics" [Instructor))

Here there is no relation name given as an argument of project operation.
Instead, expression is given that evaluates to a relation.

40

L.

Relational Algebra

» The Rename operation
* In general, results of relational-algebra expressions do not have name.
 But, if you want to give the name to the result rename operation is used.
» This is unary operation and is denoted by lowercase Greek letter rho (p).
* E.g. Given relational algebra expression E,

py (E)

returns the result of expression E under the name x

L.

Relational Algebra

> The Rename operation

* Another form includes a relational algebra expression E with arity n.

pX(Al, Az, 293 An) (E)
returns the result of expression E under the name x and with the attributes

names renamed to A, A,, ..., A,

E.g. Find the ID and name of those instructors who earn more than the
instructor whose ID is 1.

l_[i.ID, i.name ((Gi.salary>w.salary (pi(instructor) X Oy D=1 (pw(instructor)))))

42

L.

Relational Algebra

» The Cartesian-Product operation

* The Cartesian-Product operation allows us to combine information from
any two relation.

It is denoted by a Cross (x).

E.g. Cartesian-Product of relation r1 and rZ2 is r1xr2.

» A Cartesian-Product of set produces pairs but a Cartesian-Product of
database relations concatenates two tuples t1 and t2 into a single tuple.

» This is a binary operation.

43

Relational /

» The Cartesian-Product operation

* As the same attribute name may appear in the both relations, we use
following naming schema:

* E.g. The relation schema r = instructor x teaches is

(instructor.ID, instructor.name, instructor.dept_ name, instructor.salary,
teaches.ID, teaches.course_ID, teaches.sec_ID, teaches.semester, teaches.year)

* Relation name is dropped for the tttributes that appear in only one
relation.

* (instructor.ID, name, dept name, salary, teaches.ID, course_ID, sec_ID,
semester, year)

44

» The Cartesian-Product operation

» What tuples appear in r, if r = instructor x teaches?

* 1 contains each possible pair of tuples: one from instructor relation and
another from teaches relation.

* i.e. if instructor has nl tuples and teaches has n2 tuples then resulting
relation r will have n1*n2 tuples in it.

45

Relational Algebra

[») name dept_name salary
Mechanical 20000

Electrical 80000
Physics /5000

Physics 150000
Civil 200000
Electronics 300000

Table 2. instructor relation

Relational Algebra

ID course_ID sec_ID semester year

Table 3. teaches relation

Relational Algebra

dept_name course_ID

First
First
Second
Third
Final

Mechanical
Mechanical
Mechanical
Mechanical

Mechanical
Final

First
First

Mechanical
Electrical

N — O O A WO N —

Electrical

Table 4. r = instructor x teaches

P

ord

Relational Alge

» The Join operation

* Cartesian-product operation associates every tuple of one relation with
every tuple of another relation regardless of their actual association.

* A join operation is binary operation which combines related tuples from
different relations, if and only if the given condition is specified.

* A join operation allows us to combine a selection and a Cartesian-Product
operation into a single operation.

49

» The Join operation

* If r1 and r2 are two relations, then join operation can be represented as
rl X, r2
and it is defined as
rl X,r2 =o4(rl xr2)
where, O is a predicate and x is Cartesian-Product of r1 and r2
It can also be written as
rl X r2

50

» The Join operation

* E.g. find the information about all instructors together with the course_id
of all courses they have taught.

» Itis represented as

o p(instructor x teaches)

instructor.ID=teaches.I
* This states that take Cartesian-Product of instructor and teaches, and then

select all tuples from the resulting relation where instructor.ID matches
with the teaches.ID

Relational Algebra

[») name dept_name salary
Mechanical 20000

Electrical 80000
Physics /5000

Physics 150000
Civil 200000
Electronics 300000

Table 5. instructor relation

Relational Algebra

ID course_ID sec_ID semester year

Table 6. teaches relation

Relational Algebra

dept_name course_ID
Mechanical First
Mechanical First
Mechanical Second
Mechanical Third
Mechanical Final
Mechanical Final

Electrical First

Electrical First

Table 7. instructor x teaches

Relational Algebra

dept_name course_ID
Mechanical %0000 First
Mechanical 90000 First
Physics /5000 Second

Physics 150000 Third
Civil 200000 Final
Civil 200000 Final

Table 8. r = instructor x teaches

> The Set operations - Union

* Union operation combines results of two or more relational algebra
operations and provides a single relation as its output.

* Jtis denoted as U.
* If r and s are two relations then their union is
rus

* [t displays the attributes or tuples that are present in either or both of the
relations.

56

> The Set operations - Union

* E.g. Find the set of all courses taught in the Fall of 2017 semester, Spring
2018 semester or both semesters.

 To find the set of all courses taught in the Fall of 2017, we write

l_Icourse_id (Gsemester=“Fall" N\ year=2017 (SeCthH))
* To find the set of all courses taught in the Spring of 2018, we write

l_[course_id (Gsemester=“Spring" N\ year=2018 (SeCthn))

S/

» The Set operations - Union

* E.g. Find the set of all courses taught in the Fall of 2017 semester, Spring
2018 semester or both semesters.

* Finally their union can be written as

l_[course_id (Gsemester=“Fall" N\ year=2017 (SECtiOn)) U

l_[course_id (Gsemester=“Spring" N\ year=2018 (SeCthn))

58

Relational Algebra

ID course_id sec_id semester year
Fall

Spring
Summer
Winter
Fall
Spring
Spring
Summer
Fall

—

|

1

2
3
3
4
4
5
6

Table 9. section relation

P

Relational Algebra

Table 10. union of given statement

60

» The Set operations - Intersection

* Intersection operation allows us to find the tuples that are present in
both input relations.

* Itis denoted as N.
» E.g. If r and s are two relations then their intersection is
rns

» The Set operations - Intersection

* E.g. Find the set of all courses taught in the Fall of 2017 semester and
Spring 2018 semester.

* To find the set of all courses taught in the Fall of 2017, we write r as

l_Icourse_id (Gsemester=“Fall" N\ year=2017 (SeCthH))
* To find the set of all courses taught in the Spring of 2018, we write s as

l_[course_id (Gsemester=“Spring" N\ year=2018 (SeCthn))

62

» The Set operations - Intersection

* E.g. Find the set of all courses taught in the Fall of 2017 semester and
Spring 2018 semester.

* Finally their intersection r N s can be written as

l_[course_id (Gsemester=“Fall" N\ year=2017 (SECtiOn)) n

l_[course_id (Gsemester=“Spring" N\ year=2018 (SeCthn))

63

Relational Algebra

ID course_id sec_id semester year
Fall
Spring
Summer
Winter
Fall
Spring
Spring
Summer
Fall

—

|

]

2
3
3
4
4
5
6

Table 11. section relation

Table 12. intersection of given statement

65

» The Set operations - set-difference

 Set-difference operation allows us to find the tuples that are present in
one relation but are not in the other relation.

* [tis denoted as -.
* E.g. If r and s are two relations then their set-difference is
r-s
which produces a relation containing those tuples in r but not in s.

66

» The Set operations - set-difference

* E.g. Find all the courses taught in the Fall 2017 semester but not in Spring
2018 semester.

* To find the set of all courses taught in the Fall of 2017, we write r as

l_Icourse_id (Gsemester=“Fall" N\ year=2017 (SeCthH))
* To find the set of all courses taught in the Spring of 2018, we write s as

l_[course_id (Gsemester=“Spring" N\ year=2018 (SeCthn))

67

» The Set operations - set-difference

 E.g. Find all the courses taught in the Fall 2017 semester but not in Spring
2018 semester.

* Finally their set-difference r - s can be written as

l_Icourse_id (Gsemester=“Fall" N\ year=2017 (SeCtIOH)) _
l_[course_id (Gsemester=“Spring" N\ year=2018 (SeCthn))

68

Relational Algebra

ID course_id sec_id semester year
Fall
Spring
Summer
Winter
Fall
Spring
Spring
Summer
Fall

—

|

]

2
3
3
4
4
5
6

Table 13. section relation

Table 13. set-difference of given
statement

/0

P

ord

Relational Alge

> The Set operations - Points to remember
* For union, intersection and set difference operations to make sense:

= We must ensure that the input relations to the union operation have
the same number of attributes; the number of attributes of a relation is
referred to as its arity.

= When the attributes have associated types, the types of the i
attributes of both input relations must be the same, for each .

* Such relations are referred to as compatible relations.

» The assignment operation

* For ease of understanding and convenience, parts of a relational algebra
expression can be assigned to temporary relation variables.

 This can be done with the help of assignment operator which is denoted

as «.
It works like assignment operator in programming language.

/2

» The assignment operation

* E.g. Find the set of all courses taught in the Fall of 2017 semester, Spring
2018 semester or both semesters. We could write it as:

courses_fall_2017 < II e iq (O (section))

semester="Fall” A year=2017

courses_spring_2018 « II ... iq (O (section))
And

courses_fall_2017 U courses_spring 2018

semester="“Spring” A year=2018

/3

» Abraham Silberschatz, Henry F. Korth and S. Sudarshan, “Database System Concepts”, Mc-Graw Hill,
7t Edition.

» https://en.wikipedia.org/wiki/Edgar E. Codd

»~ https://www.geeksforgeeks.org/relational-model-in-dbms/
» https://www.javatpoint.com/dbms-relational-model-concept
» https://www.geeksforgeeks.org/relation-schema-in-dbms/

/4

https://en.wikipedia.org/wiki/Edgar_F._Codd
https://www.geeksforgeeks.org/relational-model-in-dbms/
https://www.javatpoint.com/dbms-relational-model-concept
https://www.geeksforgeeks.org/relation-schema-in-dbms/

e Crmmmes 2
ST, o
-E-'- T g™ .':‘:._
= - =
a .
L j— ¥
| 4" |
" I L L ¥
: F - = -
" [| h] | |
| [| il ¥ Tk i
H ' | e &
| 4 FIA
- Lt
L~ . f =,
L, b .-. a1
i il =
F. -\.&.\..__..) y
.......... e
o, A
g Bl h .-:'.':.
. TiF ¥
.,

W
(=,

Relational Model and

Mr. Swapnil S Sontakke (Asst. Prof.)

Department of Computer Science and Engineering,

Walchand College of Engineering, Sangli

» Introduction to SQL

» SQL Data Definition

» SQL Operators

» Aggregate Functions

» Modification of the Database
» Basic Structure of SQL Queries
» Set Operations

» Nested Subqueries

» Original version called ‘Sequel’ was developed by IBM as a part of System R
projectin 1974.

» Later the name changed to SQL (Structured Query Language)
» SQL was standardized in 1986 by ANSI and ISO, called SQL-86.
» Recent version of standard is SQL:2016 (stable)

» SQL has clearly established itself as the standard relational database
language.

» SQL language has several parts:

- Data Definition Language (DDL)

= Has commands for defining relation schemas, deleting relations and
modifying relation schemas

- Data Manipulation Language (DML)

* Provides commands to retrieve the information from the database and to
insert tuples into, delete tuples from and modify tuples in the database

» SQL language has several parts:

* Integrity
= Provides commands for specifying the integrity constraints that the data
stored in the database must satisfy
= Operations that violates integrity constraints are not allowed.
* View Definition

= Provides commands for defining views

» SQL language has several parts:

* Transaction Control

* Provides commands for specifying the beginning and end points of
transactions

* Authorization

= Provides commands for specifying access rights to relations and views

» SQL language has several parts:

- Embedded SQL and Dynamic SQL

= Embedded and Dynamic SQL define how SQL statements can be embedded
within general-purpose programming languages, such as C, C++, Java,
Python, etc.

» The set of relations in the database are specified using Data Definition
Language (DDL).
» DDL also specifies the following information about each relation:
o T

T

T
T
T
T

ne schema for the relation
ne types of values associated with each attribute

he integrity constraints
he set of indices to be maintained for each relation.
he security and authorization information for each relation.

he physical storage structure of each relation on disk.

» Basic Types
» SQL supports a variety of built-in types. Some of them are:

* char(n): character: A fixed-length character string with user-defined
length n

» varchar(n): character varying: A variable-length character string with
user-defined maximum length n

° int: integer: a finite subset of the integers that is machine dependent
» smallint: A small integer: a machine-dependent subset of the integer type

» Basic Types

» SQL supports a variety of built-in types. Some of them are:

* Numeric(p,d): A fixed-point number with user-defined length precision.
The number consists of p digits in total (plus a sign) and d of the p digits
are to the right of the decimal points.

 Real, double precision: Floating-point and double-precision floating-point
numbers with machine-dependent precision

* float(n): A floating-point number with precision of at least n digits

10

0) ¢

» Basic Schema Definition
» SQL relation can be defined using create table command.
» The general form of create command is

A D,
<integrity-constraint,>,

Fig. 1 General form of
<integrity-constraint,> create table

» Basic Schema Definition
» Here,
Each Ai is an attribute name,

Each Di specifies the domain of attribute Ai
» Some of the integrity constraints are

* primary key (Ah"'Ain)

* Foreign key (Akf"Akn) references s

* not null

12

» Basic Schema Definition
» Example: instructor relation

ID varchar(5),
name varchar(50) not null,

dept_name varchar(20),

salary numeric(8,2),

primary key (ID),

foreign key (dept_name) references department (dept_name)

Fig. 2 create instructor table

13

» Basic Schema Definition
» Example: department relation

dept_name varchar(20),
building varchar(20),
budget numeric(12,2),

primary key (dept_name)

Fig. 3 create department table

14

» Basic Schema Definition

* A newly created relation is empty initially.

* Inserting tuples into a relation, updating them, and deleting them are
done by data manipulation statements insert, update, and delete

15

Demonstration

16

» Basic Schema Definition

* drop table
* To remove a relation from an SQL database drop table command is used.

» This command deletes all information about the dropped relation from
the database.

- This deletes all tuples from table as well the table.
* E.g. drop table table_name;
drop table instructor;

17

» Basic Schema Definition

* delete from

» This command deletes all tuples from the relation but do not delete table.
* Table becomes empty

* E.g. delete from table_name;

delete from instructor;

18

» Basic Schema Definition
alter table

This command is used to alter the table i.e. to add new attributes to
existing relation or drop attributes from a relation.

E.g. alter table table_ name add A D;
This will add attribute A with its domain D in the specified table.
E.g. alter table table_name drop A;

This will drop an attribute A from specified table.

19

Demonstration

20

» Demonstration
» Offline Tool
« XAMPP

» Online Compiler

* https://www.w3schools.com/sql/trysql.asp?filename=trysql_op_in

» SQL supports following operators that can be combined with queries.
* Arithmetic (+,-,*,/ and %)

Bitwise (&, | and *)

* Comparison (=, >, >=, <, <= and <>)

* Compound (+=, -=, etc.)
* Logical
= ALL - TRUE if all of the subquery values meet the condition
= AND - TRUE if all the conditions separated by AND is TRUE
= ANY - TRUE if any of the subquery values meet the condition

22

» SQL supports following operators that can be combined with queries.

* Logical
= BETWEEN - TRUE if the operand is within the range of comparisons
= EXISTS - TRUE if the subquery returns one or more records
= IN - TRUE if the operand is equal to one of a list of expressions
= LIKE - TRUE if the operand matches a pattern
= NOT - Displays a record if the condition(s) is NOT TRUE
= OR - TRUE if any of the conditions separated by OR is TRUE
= SOME - TRUE if any of the subquery values meet the condition

23

te Functions

» Aggregate functions are functions that take a collection (a set or multiset)
of values as input and return a single value.

» SQL offers five standard built-in aggregate functions:
* Average (avg)
* Minimum (min)
* Maximum (max)

Total (sum)
* Count (count)

24

"the Database

» Modification of database includes the commands to add, remove and update
the database information.

» Insertion
* To insert data into a relation, we need to specify a tuple to be inserted.

- The attribute values for inserted tuples must be members of the
corresponding attribute’s domain.

* Command used for inserting a tuple is
insert into table_name values (‘value 1’, ‘value 2/, ..., ‘value N’);

25

dept_name varchar(20),
building varchar(20),
budget numeric(12,2),
primary key (dept_name)

Fig. 4 department table

26

"the Database

» To insert a tuple into ‘department’ relation we write

insert into department values (‘Civil’, ‘Wing-A’, 2500000.00);

Insert into department values (‘Mechanical’, “‘Wing-B’, 2500000.00);
» Here order of values is important.

» Values should be specified in the order in which the corresponding
attributes are listed in the relation schema.

» To ease this process, another way to write insert query is

27

i“ ;’7 N\, \ l' ™ y"|i|- S J--P‘-‘ " 3y whNY
Modification o

insert into department (dept_name, building, budget)
values (‘Civil’, “‘Wing-A’, 2500000.00);

Insert into department (dept_ name, building, budget)
values (‘Mechanical’, “‘Wing-B’, 2500000.00);

28

] D p o 0 7 S
\. -
[¢ '-* 1 L _L(;_‘-; o \ _.i) L

» Deletion

» We can delete whole tuple from the relation using delete command.
» We cannot delete values on only particular attributes.

» The general form of deletion in SQL is

delete from r
where P;

29

» Deletion

> Here, P represents a predicate and r represents a relation.

» The delete statement first finds all the tuples t in r for which P(t) is true and
then deletes them from r.

30

haa NAaFAalhnen
e Databsg

1 |
J CA LOAL

» Deletion
» from clause

* The from clause is a list of the relations to be accessed in the evaluation of
the query.

» where clause

* The where clause is a predicate involving attributes of the relation in the
from clause.

 In deletion, if where clause is omitted then whole relation i.e. all tuples
from the specified relation will be deleted.

] D e - V‘ 7 \ 7 '
\ "- VA
ru ”_q;_tz. J O h

> Deletion
» E.g. To delete all tuples from department relation, we write
delete from department;
To delete tuples where dept_name is Civil, we write
delete from department
where dept_name="'Civil’;

32

Viodificatie

» Deletion
» E.g. To delete tuples where dept_name is Civil, we write
delete from department
where dept name=‘Civil’;
To delete tuples where budget is between 100000 and 200000, we write
delete from department
where budget between 100000 AND 200000;

2

Ihh ﬁ\ Palk ol aValelal
e Databsg

o«
' @

L SA _ki L

» Updates

» To update/change the particular value of a tuple without changing all values
of that tuple, update statement is used.

» Similar to the insert and delete, we can update any tuple in a relation using
a query.
» The general form of update is
update table_name

set A = <new value>;

34

Viodificatie

» Updates
» E.g. To update budget of all departments by 5%,
update department
set budget=budget*1.05;

To update budget of departments by 5% where current budget is 150000.00 or

less
update department

set budget=budget*1.05
where budget <=150000.00

35

Demonstration

36

D e s QU ki e e
] D‘:‘ T.VVSA Il—"ﬁ’W L [L |_‘:_)'H‘_H | {_:':_{ hr & _4_:. =) -

» A basic structure of an SQL query consists of three clauses: select, from and
where.

» A query takes as its input the relations listed in the from clause, operates on
them as specified in the where and select clauses, and then produces a
relation as the result.

» Select clause will return relation based on the predicate specified in the
where clause.

» It performs the select and project operations of relational algebra.

37

» Queries on a Single Relation

* Here, only one relation will be specified in the query.
* The general form is
selectA, A, ..., A
from table_name

n

where P;

38

C L Welal

Wﬂ‘] La W - 4% QT W) ,—,\;_v'-'-r | ot a Y A !{ { _\r f:' 'yl r \ \
: Df“fiﬂ‘ l—"'1 [L |;"<ji‘a_".j‘ {_"A_“'i"l._tl_d_'.ll {(“Il l':J :[:’fH L \ \.‘ /

N <

» Queries on a Single Relation
* E.g. Find the department names of all instructors
select dept_ name
from instructor;
 If we don’t want duplicates, then distinct keyword is used after select.
* E.g. For the above query, if we want department name only once then
select distinct dept name
from instructor;

39

» Queries on a Single Relation

* If we want duplicates, then all keyword is used after select which
explicitly specifies that include duplicates in the resulting relation.

* E.g. For the above query, if we want all department names then we write
select all dept_name
from instructor;
* By default SQL allows duplicates, so we don’t need to use all keyword.
* But, distinct keyword is mandatory if we don’t want duplicates.

40

C L Welal

Wﬂ‘] La W - 4% QT W) ,—,\;_v'-'-r | ot a Y A !{ { _\r f:' 'yl r \ \
: Df“fiﬂ‘ l—"'1 [L |;"<ji‘a_".j‘ {_"A_“'i"l._tl_d_'.ll {(“Il l':J :[:’fH L \ \.‘ /

N <

» Queries on a Single Relation

 Select clause may also contain arithmetic expressions involving +,-* and /
operators

» E.g. Following query returns a relation that is same as the instructor
relation, except the salary is incremented by 10%.

select ID, name, dept_name, salary*1.1
from instructor;

» Queries on a Single Relation

* The where clause allows us to select only those rows in the resulting
relation of the from clause that satisfy a specified predicate.

* E.g. To find the names of all instructors in the Electrical department who
have salary greater than $70,000

select name
from instructor
where dept_name="Electrical’ and salary > 70000

42

» Queries on a Single Relation

* The where clause may also include comparison and logical operators as
you can see in the above example.

43

[] Y N N N g
[} f [| 4 \

) L e ~ J=- - ’,—‘.__"-"_ WELY £ y
)C l.‘ig’;fl} C DUl _\.A_‘,l L !k_[l U| NE: ‘,Q, 1

DAVS |
— ‘—-\"

» Queries on a Multiple Relations
* A single SQL query can specify two or more relations.
* The general form is
select4,4,,.., 4,
fromr, r,..,r,
where P;

* Each A, represents an attribute, and each r, a relation. P is a predicate. If
the where clause is omitted, the predicate P is true.

44

Basic Structure of SOL Queri

QA Q

» Queries on a Multiple Relations

* E.g. To retrieve the names of all instructors, along with their department
names and department building name, we write

select name, instructor.dept name, building
from instructor, department
where instructor.dept name=department.dept name;

45

C L Welal

Wﬂ‘] La W - 4% QT W) ,—,\;_v'-'-r | ot a Y A !{ { _\r f:' 'yl r \ \
: Df“fiﬂ‘ l—"'1 [L |;"<ji‘a_".j‘ {_"A_“'i"l._tl_d_'.ll {(“Il l':J :[:’fH L \ \.‘ /

N <

» Queries on a Multiple Relations

* In the similar manner, we can retrieve the Cartesian-Product of any
two(or more) relations.

» E.g. Cartesian-Product of instructor and department can be written as

select ID, name, instructor.dept name, salary, department.dept_ name,
building, budget

from instructor, department

46

n Po oY o

) iy QY e e e e B e (Y M A
ﬁ C I,‘:;J ,‘ [\ o TL‘ , _\.A_‘,l U !k_[l U| | ”fr ‘_Q, | | -T;‘N’J] | W L“J U {ru;] N

— p € \\. ok -

» Queries on a Multiple Relations
* To retrieve all the attributes of a relation we use *.

* E.g. To retrieve the all attributes of instructor and department relation we
write

select * from instructor, department;
Or
select instructor.*, department.*
from instructor, department;

47

n Po oY o

) iy QY e e e e B e (Y M A
ﬁ C I,‘:;J ,‘ [\ o TL‘ , _\.A_‘,l U !k_[l U| | ”fr ‘_Q, | | -T;‘N’J] | W L“J U {ru;] N

— p € \\. ok -

» Ordering the Resulting Relation

* The order by clause causes the tuples in the result of a query to appear in
sorted order.

* E.g. To retrieve the all attributes of department relation sorted based on
the dept_name, we write

select * from department
order by dept_name;

48

L- Y @ | ',' W

]ﬂﬂl Lo X & - a> *i}‘i’-?’ 2 Wal m | "2 A :{f [O ‘:' 'vl)
. D“j ch |'JI] \ [.j\:' |;—\'i‘_"1 L {_"4_“ ';'{L!‘_El_l’l_l.l l {‘Eui" l':J : ['-';JAHMV" ‘1 v [k \.‘ A

N <

> The Rename Operation

* The rename operation is used to rename the attributes or relations in
the query.

* To rename we use as clause.
* It can be used in both select and from clause.

* E.g. To retrieve the name as instructor_name from instructor relation, we
write

select name as instructor name
from instructor;

49

f & |V‘ \

L "-\ IJ-'rJ. e \ ¥ 2 ."-I' e Be 'V“_‘J" Va ;'
CHUructiure o

» The Rename Operation

* E.g. To retrieve the name as instructor_name and dept_name from
instructor as T relation, we write

select Tname as instructor_name, T.dept_name
from instructor as T;

50

Demonstration

D e s QU ki e e
] D‘:‘ T.VVSA Il—"ﬁ’W L [L |_‘:_)'H‘_H | {_:':_{ hr & _4_:. =) -

» Set Operations

* The mathematical set operations union, intersection and set intersection
can be represented in SQL with the help of union, intersection and
except.

» Union

» This operation combines results of two select statements and provides a
single result.

* It by default, automatically removes all the duplicates.
* To retain duplicates, use union all.

52

g " Y | \

L "-\ IJ-'rJ. e \ ¥ 2 ."-I' e Be 'V“_‘J" Va ;'
CHUructiure o

» Union

* E.g. To find the set of all courses taught in the Fall 2017, Spring 2018 or in both,
we write

(select course id
from section
where semester = 'Fall' and year= 2017)
union
(select course id
from section
where semester = 'Spring’' and year= 2018);

53

» Union

* Some databases allow parenthesis for each separate part of statements
and some don’t.

» Parenthesis are useful for ease of reading.

54

[@ NeVaN Il

) L e ~ J=- - ’,—‘.__"-"_ WELY £ y
)C l.‘ig’;fl} C DUl _\.A_‘,l L !k_[l U| NE: ‘,Q, 1

o AWN |
l ‘—-\"

» Intersect

* This operation combines results of two select statements and provides a
single result.

* Itreturns the common tuples from two (or more) relations.
* [t by default, automatically removes all the duplicates.
 To retain duplicates, use intersect all.

S

g " Y | \

L "-\ IJ-'rJ. e \ ¥ 2 ."-I' e Be 'V“_‘J" Va ;'
CHUructiure o

» Intersect
- E.g. To find the set of all courses taught in both the Fall 2017 and Spring 2018,

(select course id

from section
where semester = 'Fall' and year= 2017)
intersect

(select course id

from section
where semester = 'Spring' and year= 2018);

56

l @ [y

) L e ~ J=- - ’,—‘.__"-"_ WELY £ y
)C l.‘ig’;fl} C DUl _\.A_‘,l L !k_[l U| NE: ‘,Q, 1

CN I
o LW N |

> except

» This operation combines results of two select statements and provides a
single result.

* It returns the tuples from that are present in one relation but not present
in another relation.

* It by default, automatically removes all the duplicates.
» To retain duplicates, use except all.

S/

g " Y | \

L "-\ IJ-'rJ. e \ ¥ 2 ."-I' e Be 'V“_‘J" Va ;'
CHUructiure o

> except
* E.g. To find the set of all courses taught in the Fall 2017 but not in Spring 2018,

(select course id

from section
where semester = 'Fall’' and year= 2017)
except

(select course id

from section
where semester = 'Spring' and year= 2018);

58

» Abraham Silberschatz, Henry F. Korth and S. Sudarshan, “Database System Concepts”, Mc-Graw Hill,
7t Edition.

59

